Астрономы выяснили, что пылевые зерна из карбида кремния начинают образовываться в остатках сверхновых через два года после взрыва звезды. Это подтверждает гипотезу, что сверхновые II типа являются важным источником пыли, богатой углеродом, наблюдаемой в молодых галактиках. Научная статья опубликована в журнале Science Advances.
Вопрос происхождения космической пыли в галактиках до сих пор остается открытым. Предполагается, что конденсация пылинок идет в плотной среде при температурах от 500 до 2000К, например в атмосферах звёзд-гигантов и сверхгигантов, в остатках новых и сверхновых, в планетарных туманностях или плотных газовых облаках, из которых формируются звезды. Однако не до конца понятно, как и где именно конденсируются и растут пылевые частицы и как они избегают разрушения в неблагоприятных условиях внутри областей активного звездообразования в галактиках.
В последнее десятилетие представления об образовании пыли во Вселенной была подвергнута пересмотру после обнаружения огромного количества пыли в молодых галактиках, возрастом от 1 до 100 миллионов лет. Была выдвинута гипотеза, что основным источником пылевых зерен в таких объектах являются взрывы сверхновых II типа. В течение нескольких лет после взрыва может образовываться пыль общей массой 0,08-1 масс Солнца. Это подтверждается данными наблюдений, например Крабовидной туманности или остатка сверхновой SN1987A, которые давали оценки массы пыли в 0,1-0,5 масс Солнца. В случае других сверхновых регистрировались меньшие количества пыли, чего недостаточно для объяснения «запыленности» наблюдаемых молодых галактик. Однако теория приходит в согласие с наблюдениями, если предположить, что количество пыли будет непрерывно расти в течение нескольких лет.
Чтобы доказать это предположение, необходимы наблюдения за остатками сверхновых в течение долгого времени после взрыва, как это было, например, в случае сверхновой SN 2010jl. А можно применить альтернативный метод, который использовала группа во главе с Наном Лю (Nan Liu), которая исследовала изотопный состав досолнечных зерен в составе метеоритов. Они представляют собой тугоплавкие частицы межзвёздной пыли, которые содержались в протосолнечной туманности. Часть этих пылинок (X-grains), состоящие из карбида кремния, образовались в остатках сверхновых, о чем свидетельствует их изотопный состав, в частности избыток изотопа 28Si и наличие короткоживущего изотопа 44Ti с периодом полураспада 60 лет. Расчеты показывают, что такие пылевые зерна включают в себя вещества из внутренней (обогащенной элементами от кремния до серы) и внешней (обогащенной элементами от гелия до углерода) областей звезды на стадии предсверхновой, в том числе изотоп 49V, образующийся в ходе реакций нейтронного захвата, и продукт его распада 49Ti, которые могут служить «хронометром» для определения времени их образования в остатке сверхновой.
В работе изучались пылевые зерна из Мерчисонского метеорита, их изотопный состав определялся при помощи методов рентгеновской энергодисперсионной спектрометрии и наноразмерной масс-спектрометрии вторичных ионов, а затем сравнивался с данными по другим исследованным метеоритам и результатами расчетов. Было установлено, что эти пылинки образовались, по крайней мере, через два года после взрыва массивных звезд-прародителей, богатых углеродом. Если учесть, что наблюдения за остатками сверхновых SN 1987A и SN 2010jl показали, что углеродосодержащие зерна пыли начали появляться через несколько лет после взрыва, то в сумме эти данные подтверждают теорию о непрерывном накоплении пыли в остатках сверхновых.
Ранее мы рассказывали о том, как выглядит остаток сверхновой в 3D и его 15 лет жизни, каким образом сверхновая раскрыла роль «центральных машин» в гамма-всплесках, и как «Хаббл» увидел световое эхо от взрыва сверхновой.
Александр Войтюк
Они находятся в маломассивных рентгеновских двойных системах
Астрономы на основе наблюдений за пульсаром PSR J1023+0038 определили механизм переключения переходных миллисекундных пульсаров между режимами активности. Предполагается, что он связан с взаимодействием между пульсарным ветром и внутренней частью аккреционного диска, а также с выбросами вещества. Статья опубликована в журнале Astronomy&Astrophysics. После рождения нейтронные звезды обладают очень высокой скоростью вращения, которая постепенно уменьшается со временем. Однако астрономам известны миллисекундные пульсары, представляющие собой быстровращающиеся нейтронные звезды, которые находятся в маломассивных рентгеновских двойных системах и раскручиваются до миллисекундных периодов вращения за счет аккреции вещества звезды-компаньона. Этот эволюционный путь состоит из нескольких стадий, одна из которых представлена переходными миллисекундными пульсарами — очень редкими и плохо изученными объектами. Они могут находиться в двух состояниях: радиопульсар (объект порождает импульсы радиоволн) и активный режим (нейтронная звезда ярко излучает в рентгеновском диапазоне, аккрецируя вещество из диска вокруг нее). В активном режиме ученые выделяют два состояния — высокий уровень активности, который возникает чаще всего и характеризуется пульсациями рентгеновского, ультрафиолетового и оптического излучения от пульсара, и низкий уровень активности, когда пульсаций нет. Астрофизиков очень интересует, каким образом эти режимы возникают и почему непредсказуемо меняются. Группа астрономов во главе с Марией Кристиной Бальо (Maria Cristina Baglio) из Нью-Йоркского университета в Абу-Даби опубликовала результаты мультиволновых наблюдений за переходным миллисекундным пульсаром PSR J1023+0038, проведенных в июне 2021 года при помощи наземных и космических телескопов, таких как NuSTAR, XMM-Newton, «Хаббл», VLT, ALMA, VLA, NTT и FAST. PSR J1023+0038 был обнаружен в 2007 году как пульсар с периодом вращения 1,69 миллисекунды, обращающийся вокруг маломассивной звезды-компаньона (около 0,2 массы Солнца) за 4,75 часа. В 2013 году он перешел в режим высокого уровня активности, демонстрируя признаки формирования аккреционного диска. Данные наблюдений позволили астрономам построить физическую модель переключения миллисекундного пульсара между режимами активности. Во время высокого уровня активности существует ударная волна между ветром от пульсара и внутренним аккреционным потоком, где возникает большая часть рентгеновского излучения, а также рентгеновские, ультрафиолетовые и оптические пульсации. При этом самая внутренняя область усеченного, геометрически тонкого аккреционного диска, заменяется радиационно неэффективным, геометрически толстым потоком, а падающее на пульсар вещество втягивается в магнитное поле и ускоряется, образуя компактный джет из плазмы, которая выбрасывается наружу. Переход в режим низкого уровня активности инициируется дискретными выбросами вещества поверх джета вдоль оси вращения пульсара, что приводит к угасанию пульсаций. В таком состоянии пульсарный ветер все еще способен проникнуть в аккреционный диск и инициировать возникновение джета. Затем поток вещества из аккреционного диска может вновь заполнить область вблизи пульсара и он перейдет высокий режим активности. Ранее мы рассказывали о том, как ученые впервые увидели гамма-затмения пульсаров-«черных вдов» и напрямую измерили скорость собственного движения пульсара.