Астрономы на основе данных с наземных и космических обсерваторий создали панорамную визуализацию окрестностей сверхмассивной черной дыры в центре Млечного Пути. Это позволит понять динамику потоков газа и излучения вблизи черных дыр, говорится на сайте телескопа «Чандра»; препринт исследования опубликован на портале ArXiv.org.
В центральной области Млечного Пути, на расстоянии 26 тысяч световых лет от Солнца, находится компактный радиоисточник Стрелец A*, который, предположительно, представляет собой сверхмассивную черную дыру массой в 4,2 миллиона масс Солнца. Ее окрестности являются очагом астрофизической активности, в котором важную роль играют потоки излучения и вещества от примерно тридцати массивных горячих звезд класса Вольфа-Райе, расположенных в пределах полутора световых лет от черной дыры. Потоки вещества, истекающие от звезд, могут сталкиваться, образуя ударные волны, или, при приближении к черной дыре, падать на нее по спиральной траектории. При этом газ будет нагреваться до высоких температур и излучать в рентгеновском диапазоне. Черная дыра может также провоцировать интенсивные выбросы вещества, которые могут «расчистить» ее окрестности от материала звездных ветров. Стрелец А* характеризуется низкой скоростью аккреции вещества, что позволяет определить параметры отдельных звезд, вращающихся вокруг него, с достаточной точностью, и понять механизмы взаимодействия звезд и газовых облаков вблизи черных дыр.
Группа ученых под руководством Кристофера Рассела (Christopher Russell) из Папского Католического университета Чили смоделировала окружение черной дыры на основе данных, полученных в инфракрасном диапазоне при помощи телескопа VLT (Very Large Telescope) и наблюдениях рентгеновском диапазоне при помощи космического телескопа «Чандра», также были задействованы и другие обсерватории. В работе использовался код GADGET-2, основанный на методе гидродинамики сглаженных частиц (SPH), модель охватывает временной период с 1100 лет назад до сегодняшнего дня и содержит 25 звезд Вольфа-Райе, теряющих массу со скоростью от 5×10-5 до 5×10-4 масс Солнца в год в виде звездных ветров, начальные скорости которых лежат в диапазоне от 600 до 2500 километров в секунду. Было построено три модели вспышек вблизи черной дыры, которые призваны объяснить сильную активность и оттока вещества от Стрельца A* в период от 400 до 100 лет назад.
Результаты работы показывают, что диффузное рентгеновское излучение от области, размером 0,6 световых лет, вблизи черной дыры, является следствием столкновения звездных ветров и оттока вещества во время вспышек, порождаемых черной дырой. При этом вспышки влияют на интенсивность рентгеновского излучения в течение долгого времени, даже если она произошла более ста лет назад, и находятся в обратной связи с ней — сильный отток вещества «расчищает» окрестности черной дыры от материала звездных ветров и уменьшает интенсивность рентгеновского излучения. В дальнейшем ученые планируют доработать модель с учетом двойных звездных систем и звезд спектрального класса О, а также околоядерного диска.
Ранее мы рассказывали о том, как сверхмассивная черная дыра Млечного Пути указала на релятивистские эффекты у звезд и помогла родиться новым звездам, а также о том, как ученые искали частицы-кандидаты на роль темной материи, излучаемые этой черной дырой.
Александр Войтюк
Он порождает радиоизлучение
Астрономы обнаружили нового кандидата во внесолнечный объект, обладающий магнитосферным радиационным поясом. Им стал ультрахолодный карлик LSR J1835+3259, порождающий вспышечное радиоизлучение за счет выбросов плазмы из пояса. Статья опубликована в журнале Science. Ультрахолодные карлики представляют собой маломассивные звезды и субзвездные объекты спектрального класса M6 и позднее. Обычно такие объекты спокойные в радиодиапазоне, однако часть из них способны порождать радиоизлучение на гигагерцовых частотах. Предполагается, что излучение может генерироваться за счет нестабильности электронно-циклотронного мазера, которая также объясняет радиоизлучение полярных сияний на планетах. Согласно альтернативной версии, оно возникает в результате синхротронных или гиросинхротронных процессов, которые идут в короне или радиационных поясах — областях внутри магнитосферы планеты, образующих магнитную ловушку для энергетических заряженных частиц (ими обладают Земля, Юпитер, Сатурн, Уран и Нептун, а также ультрахолодный карлик J1835+3259). Группа астрономов во главе с Хуаном Батистой Климентом (Juan Bautista Climent) из Университета Валенсии сообщила, что обнаружила второй пример радиационных поясов вне Солнечной системы — ими обладает объект LSR J1835+3259, расположенный в 18,4 светового года от Солнца в созвездии Лиры. Он считается коричневым карликом (однако может быть и ультрахолодным карликом класса M8.5) и обладает радиусом Юпитера и периодом вращения 2,84 часа. Наблюдения за объектом велись при помощи наземного радиоинтерферометра со сверхдлинной базой EVN (European VLBI Network) в июне 2021 года. Наблюдения за LSR J1835+3259 выявили два всплеска радиоизлучения, мощность которых на два порядка превышает полную мощность радиоизлучения сияний Юпитера. Ученые обнаружили у карлика протяженную магнитосферу со сложной морфологией, совместимой с наличием радиационного пояса. Зона излучения простирается на примерно 6,5 радиусов карлика от карлика. При этом оценочная индукция магнитного поля в радиационном поясе во время вспышек может составлять около 18 или 170 гаусс, а средняя энергия электронов — 3-8 мегаэлектронвольт (в предположении, что карлик обладает дипольным магнитным полем с индукцией 5 килогаусс в полярных областях). Предполагается, что радиоизлучение от радиационного пояса LSR J1835+3259 возникает, когда накопленная в нем плазма не может больше удерживаться из-за быстрого вращения карлика и выбрасывается, порождая магнитные пересоединения и запуская процесс ускорения электронов. Ранее мы рассказывали о том, как было впервые зафиксировано радиоизлучение от экзопланеты.