Физики из Гарвардского университета и Университета Уотерлу создали металинзу, фокусное расстояние которой остается постоянным для волн с длинами от 470 до 670 нанометров — практически во всем видимом диапазоне. Для этого они объединяли пластинки из оксида титана в группы по два и подбирали их параметры таким образом, чтобы задержка фазы волн не зависела от их частоты. Статья опубликована в Nature Nanotechnology.
Металинзы состоят из большого числа вертикальных пластинок, имеющих размер порядка длины волны света и искажающих направление и фазу падающего излучения. Выстраивание пластинок в определенном порядке позволяет фокусировать свет, имитируя обычную линзу. С другой стороны, толщина металинзы может достигать всего нескольких сотен нанометров, что значительно меньше толщины обычных линз, использующих преломление света на границе двух сред. Кроме того, с помощью металинз можно преодолеть дифракционный предел, то есть разрешить объекты, размер которых меньше длины волны используемого света (подробнее в нашей новости). Наконец, металинзы значительно легче и дешевле в производстве, чем обычные линзы, что делает их привлекательными для использования в оптических приборах.
Однако металинзы страдают от одного существенного недостатка — они хорошо работают только для узкого диапазона длин волн. Из-за того, что фазовый сдвиг падающего света зависит не только от расположения пластинок, но и от длины волны, фокусное расстояние линзы будет отличаться для излучения разных цветов. В результате в металинзах возникают сильные хроматические аберрации, и это не позволяет заменить ими обычные линзы. Сейчас ученые пытаются решить эту проблему. Так, около года назад группа исследователей из США и Канады сообщила о создании металинзы, фокусное расстояние которой оставалось постоянным для зеленого света с длиной волны от 490 до 550 нанометров.
На этот раз группа ученых под руководством Федерико Капассо (Federico Capasso) смогла изготовить металинзу, которая работает одинаково для излучения с длинами волн от 470 до 670 нанометров, то есть покрывает практически весь оптический диапазон. Для этого они заставили эффективный коэффициент преломления наноструктур зависеть от частоты падающего излучения. Они объединили в группы по два пластинки оксида титана TiO2 различной длины, толщины и высоты. В зависимости от соотношения параметров пластинок в группе задержка фазы проходящего через нее света по-разному зависела от длины волны — например, оставалась постоянной.
Выстраивая в дальнейшем группы специальным образом, физики добились фокусировки излучения. Фокусное расстояние получившейся линзы не зависело от длины волны падающего света, и это позволяло получать четкие картинки не только в монохроматическом излучении лазеров разных цветов, но и в белом свете.
Кроме того, чтобы продемонстрировать универсальность предложенного метода, помимо ахроматической линзы исследователи сконструировали линзы, у которых фокусное расстояние было пропорционально первой или второй степени частоты падающего излучения. В этих случаях изображения объектов сильно размывались.
Ученые считают, что предложенный ими способ создания металинз найдет применение в литографии и микроскопии. Также они планируют создать линзы, которые будут фокусировать электромагнитные волны в других диапазонах частот.
В прошлом году та же группа физиков сообщала о создании металинз, способных работать во всем видимом диапазоне. Тем не менее, эти линзы обладали заметным ахроматизмом: например, одна из них увеличивала изображения на длине волны 532 нанометра в 138 раз, а на длине волны 620 нанометров — в 167 раз. В новой статье ученые справились с этой проблемой.
Дмитрий Трунин
Один компьютер — на сверхпроводящих контурах, другой — на ионах в ловушках
Сразу две группы физиков сообщили о результатах по симуляции неабелевых энионов на квантовом процессоре. Группа Google Quantum AI использовала для этого сверхпроводящий квантовый компьютер — их результаты опубликованы в журнале Nature. Группа Quantinuum воспользовалась квантовым компьютером на ионах в ловушках. Ознакомиться с их исследованием можно по препринту. Энионами называют класс частиц и квазичастиц, которые занимают промежуточное положение между бозонами и фермионами относительно того, как меняется волновая функция после перестановки двух частиц из пары. Их существование возможно только в двумерном пространстве. Интерес к энионам обусловлен тем, что, переставляя их, можно проводить топологически защищенные квантовые вычисления. Подробнее об этом читайте в материалах «Наплели моду» и «Спиновая жидкость». Важное условие для этого — неабелевость энионов. Так называют ситуацию, при котором операторы перестановки не коммутируют. Другими словами, важны не только сами частицы, но и последовательности их перестановок. Обычно это представляют в виде переплетения мировых линий частиц. Поиск неабелевых энионов (или неабелеонов) велся по большей части в твердотельных платформах. Физики пытались найти квазичастицы с такими свойствами. Другой подход основан на симуляции неабелеонной волновой функции с помощью ресурсов квантового процессора. Именно это удалось недавно сделать двум группам: команде Google Quantum AI, работающей на сверхпроводящем квантовой компьютере, и команде Quantinuum, в распоряжении которой есть квантовый компьютер на ионах. Работа физиков из Google во многом пересекается с исследованием, в котором они доказали выгоду от масштабирования коррекции ошибок с помощью поверхностного кода (мы рассказывали об этом недавно). Поверхностным кодом называется объединение нескольких физических кубитов в один логический. Такой подход позволяет исправлять потерю квантовой информации, вызванную декогеренцией. В новом исследовании роль неабелевых энионов играли определенные дефекты в поверхностном коде, представленном в виде квадратного графа. Дефекты имели топологический характер, а потому демонстрировали нужные свойства. Физики показали, что, перемещая дефекты по графу, можно проводить плетение и кодировать таким способом квантовую информацию. Процессор позволил создать восемь неабелионов, которые авторы использовали, чтобы закодировать три логических кубита и перевести их в состояние Гринбергера — Хорна — Цайлингера (GHZ состояние). Таким образом физики показали, что логические кубиты на основе неабелевых энионов в сверхпроводящем квантовом процессоре потенциально пригодны для квантовых вычислений. Физики из Quantinuum работали на квантовом компьютере H2, который состоит из 33 ионов иттербия, удерживаемых в чипе электронными ловушками. Стартовой точкой в этом исследовании стало запутывание 27 из них в состояние, которое можно было бы описать с помощью решетки кагомэ с периодическими граничными условиями. Такую решетку проще всего представить свернутой в тор. Полученная поверхность представляла собой виртуальное двумерное пространство, в котором могли существовать неабелевы энионы. Физики возбуждали их парами, применяя определенные логические операторы к запутанному состоянию. Они убедились, что движение возбуждений по решетке имеет неабелев характер и допускает плетение. Таким путем они создали из мировых линий трех неабелеонов топологические кольца Борромео. Манипуляции с топологией привлекают большое внимание ученых. Эти исследования были удостоены Нобелевской премии по физике в 2016 году. Подробнее о том, за что ее вручили, мы рассказывали в материале «Топологически защищен».