Физики из Университета Буффало разработали гиперлинзу, работающую в видимом диапазоне и способную обойти дифракционный предел. Для ее изготовления авторы прибегли к метаматериалам — классу материалов с необычными оптическими свойствами. Об этом сообщает пресс-релиз Университета, статья опубликована в открытом доступе в журнале Nature.
Метаматериалами называют класс материалов, свойства которых определяются скорее их микроструктурой, нежели веществом, из которых они созданы. К ним относятся, например, среды, обладающие отрицательным коэффициентом преломления. Впервые их теоретически описал советский физик Виктор Веселаго 1968 году. Это свойство приводит, например, к тому, что свет попадая в такую среду, преломляется в ту же сторону, откуда пришел пучок, а тонкая прямоугольная пластина ведет себя как линза. Как правило такие материалы состоят из многочисленных повторяющихся элементов, например, металлических колец или различных тонких слоев.
Гиперлинза в новой работе была изготовлена авторами из метаматериала на основе золота и полимера (ПММА). Она имеет веерообразную форму, что отличает ее от традиционных суперлинз, в которых тонкие слои расположены на манер концентрических окружностей. Для проверки работоспособности линзы физики разместили перед ней две узкие наноразмерные щели, отстоящие друг от друга на 250 нанометров. На них, с помощью оптического волновода, направили луч лазера с длиной волны 780 нанометров — щели разделили его на два отдельных луча.
Если сразу после щели находились бы линзы из традиционных материалов, то любая их комбинация не позволила бы различить два образовавшихся пучка света. Однако гиперлинза смогла пространственно разделить их, что удалось зафиксировать исследователям. Веерообразная структура послужила одновременно преобразователем эванесцентных волн, порожденных щелями, в распространяющиеся, а также выполнила свою роль линзы.
Авторы отмечают, что представленные ими линзы позволяют получать изображения малых объектов с меньшими потерями, чем у традиционных суперлинз.
Впервые идея линз, преодолевающих дифракционный предел появилась в 2000 году, когда английский физик Джо Пендри теоретически показал, что в отличие от классических сред с положительным коэффициентом преломления, в метаматериалах эванесцентные волны усиливаются, а не затухают. Создав метаматериал с определенными оптическими характеристиками (гиперболической дисперсией), преобразующий эванесцентные волны в распространяющиеся, физики смогли получить требуемые характеристики.
Главной особенностью гиперлинз, созданных авторами, является возможность конвертировать эванесцентные волны света в распространяющиеся. Эванесцентными, или затухающими, называют особый класс волн, распространяющихся вдоль границы раздела фаз. С удалением от поверхности амплитуда таких волн экспоненциально, затухает. Важной особенностью этих волн является значительно меньшее значение дифракционного предела — именно с помощью них реализована сканирующая оптическая ближнепольная микроскопия, один из первых методов позволивших увидеть наномир в цвете. Однако создать реальное изображение объекта (для чего и необходима линза) можно только с помощью обычных, распространяющихся волн.
Низкочастотная оптическая стимуляция мозга усиливает связность между его отделами и стимулирует выработку миелина, что снижает тревожность и по влиянию на поведение напоминает медитацию. К таким выводам пришли исследователи из Университета Орегона, которые установили, что обучение и опыт действительно могут изменять состояние белого вещества на клеточном уровне. Результаты исследования опубликованы в журнале Proceedings of the National Academy of Sciences.