Вытеснение вязкого масла в пористой среде водой может происходить по четырем различным механизмам в зависимости от внешнего давления. К такому выводу пришла группа французских гидродинамиков, исследовав подобный процесс в упорядоченной системе из пересекающихся под прямым углом микроканалов. Результаты работы, опубликованной в Physical Review Letters, могут оказаться полезными для повышения эффективности нефтедобычи при прокачке нефти через пористые минералы.
Процесс вытеснения нефти из пористой горной породы с помощью воды — один из способов увеличить количество добываемой нефти и повысить эффективность источника. Известно, что вытеснение при этом происходит очень неравномерно, и внутри микроканалов пористых минералов может оставаться довольно большое количество нефти. Но несмотря на это, процесс подобного «выдавливания» оказался к настоящему моменту очень мало изучен. Подавляющее большинство уже опубликованных работ посвящено вытеснению жидкости в пористых системах, в которых более вязкая жидкость вытесняет менее вязкую жидкость или газ, а в случае с водой и нефтью наблюдается как раз обратная ситуация.
Группа французских гидродинамиков под руководством Дени Бартоло (Denis Bartolo) из Лионского Университета решила исследовать этот случай и в своей работе рассмотрела двумерную решетку пересекающихся каналов, заполненных силиконовым маслом, которое постепенно вытесняется водой. Такая сетка, состоящая из каналов шириной 80 микрон, объединенных в ячейки шириной 200 микрон, моделирует пористую среду минерала. Отношение вязкости масла к вязкости воды составило 560. Приложенная к жидкости сила была направлена по диагонали квадратной ячейки.
Оказалось, что в такой системе в зависимости от скорости жидкости возможно четыре различных сценария, по которым происходит постепенное замещение масла на воду. Определяется выбор сценария соотношением сил взаимодействия между водой, маслом и твердой поверхностью. Движущими силами при этом являются возможное возникновение неустойчивости Релея — Плато (распада жидкости на отдельные капли, если радиус кривизны поверхности слишком мал) и смена механизмов переноса жидкости в каналах.
Тот или иной способ распространения воды по такой системе каналов выбирается в зависимости от соотношения скорости водной фазы к поверхностному натяжению на границе между маслом и водой. Так, при самых маленьких скоростях, вода распространяется преимущественно вдоль каналов, поворачивая через каждые 5-10 периодов на 90 градусов. При увеличении скорости происходит переход во второй режим, в котором вода распространяется узкими потоками практически вдоль внешней силы, не делая при этом никаких крюков.
В третьем режиме образуется система сильно разветвленных узких потоков, в среднем направленных вдоль внешней силы. Сливаясь, они через какое-то время могут образовать один широкий поток. При самых больших скоростях жидкость образует сложные асимметричные ветвистые структуры, и мощными потоками распространяется вдоль каналов, которые иногда «протекают» поперек потока и могут в результате образовать соседний параллельный поток.
Чтобы разобраться, что в каждом из случаев происходит при вытеснении одной жидкости другой, гидродинамики использовали конфокальную микроскопию, с помощью которой смогли оценить форму фронта натекающей жидкости. Оказалось, что при малых скоростях жидкости динамика распространения определяется гидродинамическими неустойчивостями, а при больших — эффектами двухфазного переноса: из-за того, что вязкое масло не успевает полностью вытесниться жидкостью, в узлах решетки, а иногда и на более протяженных участках каналов в потоке воды сохраняются капли масла.
По словам авторов работы, образование структур каналов при пропитке пористого материала похоже на рост дендритных структур при кристаллизации, и увеличение скорости жидкости приводит к фрагментации структуры. Однако исходя из полученных данных можно определить оптимальный режим, при котором масло практически полностью замещается водой, и в дальнейшем результаты работы можно будет использовать для увеличения эффективности прокачки нефти в пористых породах.
Материалы со сложной пористой структурой из пересекающихся микроканалов используются не только в качестве модели пористых минералов. Например, похожие губчатые материалы на основе микрогелей можно применять для создания искусственных органов, а твердые пористые металлические элементы, по которым течет жидкость, японские разработчики использовали для охлаждения моторов гуманоидных роботов.
Александр Дубов
Это показали эксперименты с газированными напитками
Американские и французские физики разобрались в причинах, по которым всплывающие в газированном напитке пузыри выстраиваются или не выстраиваются в ровные цепочки. Для этого они проводили эксперименты с дегазированными напитками (газировкой, пивом, игристым вином и шампанским) и модельными жидкостями. В результате ученые выяснили, что на этот эффект влияет размер пузырей и характеристики и количество поверхностно-активных веществ в напитке. Исследование опубликовано в Physical Review Fluids. Всплытие пузырей в жидкости — это неотъемлемая часть множества процессов в природе и технологиях, начиная от просачивания газов из-под океанского дна и заканчивая очисткой сточных вод с помощью насыщения ее кислородом в аэротенках. Важную роль пузыри играют и в производстве газированных напитков: мы уже рассказывали об их роли в восприятии вкуса пива и шампанского. В случае с шампанским всплытие пузырьков играет еще и важную эстетическую роль: они поднимаются в виде почти вертикальных цепочек с постоянным интервалом. Вместе с тем, такое поведение встречается не во всех напитках. Теоретики лишь недавно смогли объяснить причину противоположного поведения: всплытия по зигзагообразным или спиральным траекториям. Причины же возникновения ровных цепочек физикам пока до конца не ясны, равно как и условия, при которых разные режимы всплытия сменяют друг друга. Ответить на эти вопросы взялась команда американских и французских физиков под руководством Роберто Зенита (Roberto Zenit) из Университета Брауна. Им удалось экспериментально и теоретически выяснить, что на формирование стабильных пузырьковых цепочек оказывает влияние два фактора: их размер и наличие в жидкости поверхностно-активных веществ (ПАВ). В случае с напитками последний фактор оказывается решающим — он определяет разницу во всплытии пузырьков между газированной водой и шампанским. Физики проводили опыты в плексигласовом прямоугольном бассейне размером 50 × 50 × 400 миллиметров. На дно бассейна ученые устанавливали иглы различного диаметра закругления, через которые подавали воздух и получали пузырьки разного размера. Контроль подачи воздуха, в свою очередь, регулировал частоту их образования и, как следствие, межпузырьковое расстояние. Исследователи наполняли установку жидкостями, предварительно дегазированными в условиях вакуума: газированной водой, светлым пивом, игристым вином и шампанским. Кроме того, в качестве модельной жидкости они использовали смеси дистиллированной воды и глицерина в различных пропорциях. Эксперименты сопровождались численным моделированием с помощью уравнений Навье — Стокса. Главный результат, полученный физиками, заключается в том, что стабильность цепочки устанавливается при размерах пузырей или количестве ПАВ, выраженного через число Ленгмюра, выше некоторых порогов, а до того они расходятся в пределах конуса. Симуляции показали, что пузырьки нужных размеров могут двигаться прямолинейно только в том случае, если на их поверхности создается достаточная завихренность — тогда подъемная сила, действующая на нижний пузырь под влиянием верхнего, меняет знак и вталкивает его следом. На это, в свою очередь, влияет химический состав напитков: если в пиве ПАВ — это тяжелые белки, то в шампанском эту роль играют более легкие жирные кислоты. Полученные результаты, помимо применения в производстве алкоголя, можно использовать для оценки уровня загрязнения ПАВ практически в любой жидкости. Группу Зенита давно интересуют пузырьки в алкоголе. Ранее мы рассказывали, как физики научно обосновали традиционный способ определения концентрации этанола при перегонке мескаля по времени жизни пузырьков.