Машинное обучение помогло разработать эффективный алгоритм, позволяющий роботам избежать столкновений с другими объектами, использовать при этом меньше вычислительных мощностей, чем аналогичные системы. Разработка была представлена на Конференции по обучению роботов в штаб-квартире Google, статья опубликована на arXiv.org.
Инженеры постоянно работают над улучшением безопасности роботов, работающих рядом с людьми. Дело в том, что робот может нанести человеку травму, просто «не заметив» его. Некоторые разработчики предлагают использовать для защиты от таких случаев мягкие детали корпуса, а другие занимаются совершенствованием алгоритмов обнаружения препятствий.
Группа исследователей под руководством Никхил Дас (Nikhil Das) из Калифорнийского университета в Сан-Диего создала новый алгоритм ухода от столкновений под названием Fastron. В основе их алгоритма лежит разбиение конфигурационного пространства, то есть совокупности всех возможных конфигураций робота, на две части: свободное пространство и часть пространства, в котором робот может столкнуться с препятствием. Такой подход уже использовался в других работах, но из-за несовершенства алгоритмов постоянная проверка возможности столкновения отнимала очень много вычислительных ресурсов, особенно в средах с движущимися препятствиями.
Американские исследователи смогли оптимизировать алгоритм с помощью машинного обучения на основе перцептрона. Для этого они самостоятельно создали тренировочный набор данных, состоящий из множества конфигураций робота. В результате алгоритм научился эффективно определять границу между точками в пространстве, в которых робот может или не может столкнуться с объектом.
Поскольку при движении объекта он меняет свое положение постепенно, вместо того, чтобы заново проверять все точки в пространстве на возможность столкновения, алгоритм сначала проверяет только те, которые находятся рядом с границей. Разработчики смоделировали работу алгоритма в случае с манипуляторами с двумя и семью степенями свободы, и выяснили, что алгоритм справляется со своей задачей в несколько раз быстрее, чем аналогичные системы других исследователей.
В прошлом году американские исследователи создали другой алгоритм для роботов, работающих в группе, который позволяет им избегать столкновений друг с другом и даже с роботами, которые не соблюдают такие правила безопасности. А немецкие исследователи представили воздушную подушку для робота-манипулятора, которая надувается как только он начинает движение, и тем самым защищает окружающих людей от столкновений с жесткими или острыми частями робота.
Григорий Копиев
В других опытах использовался морской моллюск хитон
Японские инженеры использовали мокрицу и морского моллюска хитона в качестве захвата для роборук. В экспериментах оба беспозвоночных успешно захватывали, удерживали и вращали предметы в воздушной и водной среде соответственно. Исследователи надеются, что в будущем этих и других животных можно будет использовать для создания биогибридных устройств. Впрочем, некоторые их коллеги настроены скептично. Препринт исследования выложен на сайте arXiv. Ученые давно вдохновляются анатомией животных при создании разнообразных роботов. А в последнее время разрабатывается все больше биогибридных устройств, в которых живые организмы или части их тел совмещены с механическими деталями. Например, в прошлом году американские инженеры превратили мертвого паука-волка в пневматический захват. Авторы другого проекта использовали усики и мозг живой саранчи, чтобы создать детектор злокачественных клеток (подробнее об этом читайте в нашем материале «Запах опухоли»). Команда инженеров, которую возглавил Кэндзиро Тадакума (Kenjiro Tadakuma) из Университета Тохоку, предложила использовать живых существ в качестве концевых эффекторов (захватов) роботов. Согласно задумке исследователей, животное можно прикрепить на конец стандартной конечности робота и захватывать с его помощью различные предметы. В первую очередь на эту роль подойдут существа с экзоскелетом, для которых характерны рефлекторные движения. Чтобы оценить потенциал этой идеи в воздушной и водной средах, Тадакума и его соавторы провели серию экспериментов со сворачивающейся в шар мокрицей из семейства Armadillidiidae и морским моллюском из класса хитонов (Polyplacophora), представители которого используют нижнюю часть мантии и ногу в качестве мощной присоски для крепления к камням и скалам. По одной особи каждого вида поймали в кампусе Университета Тохоку и в Японском море соответственно. Механические детали роборук напечатали на 3D-принтере. Для присоединения мокрицы к роботизированной конечности исследователи разработали крепления с одним или двумя гибкими жгутами. Крепление первого типа позволяло ракообразному свернуться в шар, а крепление второго типа фиксировало его в развернутом состоянии. При этом хитона прикрепили к роборуке с помощью нанесенного на панцирь эпоксидного клея. Эксперименты с мокрицей проводились в воздушной среде. В ходе испытаний исследователи подносили кусочек ваты к роборуке с прикрепленным к ее концу ракообразным. После прикосновения к этому объекту мокрица рефлекторно сворачивалась и захватывала его. А примерно через 115 секунд она снова разворачивалась и отпускала ватку. В других тестах к кусочку ваты подносили мокрицу, которая не могла свернуться, поскольку была прикреплена к роборуке парой креплений. Вместо этого она перебирала конечностями, перемещая ватку. https://youtu.be/yo_mXCJRFZs Испытания хитона в качестве концевого эффектора проводились в аквариуме. Моллюска, прикрепленного к роборуке, подносили к предметам, сделанным из пробки, дерева и пластика. Во всех случаях хитон прочно прикреплялся нижней частью тела к поверхности этих объектов. Для сравнения, обычные вакуумные присоски не могут удерживать предметы из пробки и дерева. Кроме того, авторы сняли на видео, как неподвижно закрепленный хитон пытается ползти вдоль деревянного и пластикового цилиндра и в результате вращал его. https://youtu.be/fL4DzqKwUYw Ни одно из животных во время испытаний не пострадало. После окончания опытов мокрицу выпустили в дикую природу, а хитон остался жить в аквариуме. Результаты экспериментов подтверждают, что живых существ можно использовать в качестве рабочих инструментов роботов. Однако исследователи признают, что пока у них нет возможности контролировать время, в течение которого подопытные животные удерживают предметы. Если мокрицы через несколько минут сами отпускают кусочек ваты, то хитоны могут оставаться прикрепленными к предметам намного дольше. Авторы предполагают, что, поскольку эти моллюски избегают солнечного света, их можно вынудить ослабить хватку или начать перемещать объект с помощью оптических стимулов. Тадакума с соавторами предполагают, что концевыми эффекторами могут быть не только мокрицы и хитоны, но и другие организмы, начиная с бактерий и инфузорий. Например, морские звезды, осьминоги и лягушки могли бы захватывать предметы с помощью присосок, а грифовые черепахи (Macrochelys temminckii) — перекусывать их своими челюстями. Пауков и гусениц шелкопрядов авторы предлагают использовать для трехмерной печати шелком. Впрочем, некоторые коллеги скептически отнеслись к идеям авторов. По их мнению, использование живых существ в качестве эффекторов не приносит никакой дополнительной выгоды и при этом вызывает множество этических вопросов. Ранее мы рассказывали о том, как инженеры из США использовали чучела птиц для создания орнитоптеров. Один из прототипов с искусственным корпусом покрыт настоящими перьями фазана, а в передней части корпуса закреплена голова чучела кеклика. Второй беспилотник создан на базе крыльев голубя. Оба таксидермических махолета успешно выполнили тестовые полеты. В будущем подобные орнитоптеры могут использоваться для наблюдения за дикой природой или для разведывательных миссий.