Американские физики разработали оптический фильтр на основе апериодического массива бороздок, который может пропускать свет различной длины волны в зависимости от угла падения, а также работать как расщепляющая линза. Работа опубликована в Nature Communications.
Возможность управления отражением и пропусканием света в зависимости от его угла падения и длины волны — одна из важных задач для создания оптических фильтров и химических или биологических сенсоров. Обычно для этого используются упорядоченные периодические структуры — оптические решетки или, например, фотонные кристаллы, в которых периодическим образом изменяется диэлектрическая проницаемость, что приводит к появлению оптической запрещенной зоны — диапазона длин волн, внутри которого свет полностью отражается. Еще одним примером периодических систем для управления свойств падающего света являются метаматериалы, которые сейчас предлагают использовать даже для создания невидимых объектов.
В новой работе американские физики для создания оптических фильтров предложили отказаться от требования периодичности и использовали для создания оптического фильтра апериодическую металлическую систему. Недавние теоретические работы показали, что за счет взаимодействия поверхностных плазмонов между собой и с падающим светом в таких материалах возможность пропускания и отражения света могут зависеть от его длины волны и угла падения и при этом являются чувствительными к изменению геометрии системы.
В своем исследовании ученые использовали материал, который был устроен следующим образом. В многослойной пленке, покрытой слоем серебра толщиной 100 нанометров делали щель шириной 100 нанометров, и с двух сторон от нее наносили по пять прямоугольных в сечении бороздок, расположенных на разном расстоянии друг от друга. Для определения нужной геометрии и предсказания возможных оптических эффектов физики использовали простую модель интерференции плазмонов и падающего света.
Такую пленку с апериодической системой бороздок облучали белым светом. Результаты эксперимента показали, что спектр проходящих через щель длин волн сильно зависит от угла падения света. Так, при падении света перпендикулярно поверхности проходит только красный свет, если свет падает под углом 10 градусов, то сквозь такой фильтр проходит только зеленый свет, а при падении под углом 20 градусов — только синий.
Если же развернуть такую пленку вверх ногами, то ее можно использовать как расщепляющую линзу. То есть при падении на нее белого света после прохождения через щель свет расщепляется на спектр, в котором свет каждой длины волны выходит из материала под своим углом.
Кроме того, физики предложили не ограничиваться линейной геометрией бороздок и щелей и показали, что подобный эффект можно наблюдать и для точечного отверстия и концентрических бороздок вокруг него. В таком случае вторичный источник расщепленного света является точечным. Размер предложенных устройств ограничивается длиной затухания поверхностного плазмона и сейчас составляет порядка 30 — 80 микрон.
Авторы работы отмечают, что таких свойств не удалось бы добиться с использованием традиционных периодических оптических устройств. По утверждению ученых, такие материалы могут в дальнейшем использоваться для повышения эффективности работы солнечных батарей, для расщепления оптического сигнала и сложных сенсоров.
Для управления отражением и пропусканием света сейчас используется довольно большое количество различных материалов с необычной геометрией. Так, если покрывать объекты микрочастицами с ячеистой поверхностью, то можно снизить отражение от него почти до нуля. А многие метаматериалы могут использоваться и для фильтров не только в видимом диапазоне, но и например, для дециметровых волн.
Александр Дубов
Статистическая значимость наблюдения составила около семи стандартных отклонений
В эксперименте SND@LHC на Большом адронном коллайдере зарегистрировали мюонные нейтрино со статистической значимостью около семи стандартных отклонений. Это второй эксперимент на Большом адронном коллайдере, который сообщил о надежной регистрации нейтрино. Результаты опубликованы в журнале Physical Review Letters. Нейтрино — элементарная частица, которая обладает крайне малой массой и слабо взаимодействует с веществом. При этом она играет важную роль в физике. До недавнего времени свойства нейтрино изучали в основном в области низких или сверхвысоких энергий, и широкий диапазон от 350 гигаэлектронвольт до 10 тераэлектронвольт оставался неизученным. Наземным источником нейтрино в этом диапазоне энергий является Большой адронный коллайдер. Однако проблема заключается в том, что большая часть рождающихся в нем нейтрино летит вдоль протонного пучка — в слепой зоне основных детекторов, расположенных на коллайдере. Кроме того, из-за малого сечения взаимодействия, нейтринные события сложно выделить на фоне громадной загрузки детекторов от взаимодействий других частиц. Мы недавно писали, что с этой задачей справился эксперимент FASER, впервые зарегистрировав 153 мюонных нейтрино со статистической значимостью 16 стандартных отклонений. Физики из эксперимента SND@LHC сообщили, что им также удалось зарегистрировать мюонные нейтрино со статистической значимостью около семи стандартных отклонений. В отличие от эксперимента FASER, который регистрирует нейтрино с псевдобыстротами более 8,5, чувствительная область SND@LHC сдвинута от основной оси ускорителя, в результате чего он покрывает диапазон псевдобыстрот от 7,2 до 8,4. В этой области одним из основных источников нейтрино являются распады очарованных адронов, вклад которых в эксперименте FASER пренебрежимо мал. Детектор состоит из мюонного вето, 830-килограммовой мишени и адронного калориметра. Основная мишень поделена на пять слоев, каждый из которых включает вольфрамовую пластину, ядерную фотоэмульсию и электронный трекер. Данные с фотоэмульсий на данный момент еще обрабатываются, поэтому ученые провели анализ данных, набранных только при помощи электронных трекеров. Физики отобрали 8 событий по их геометрическому расположению в детекторе и сигнатуре, соответствующей ожидаемой от мюонных событий. При этом ожидаемый фон составил 0,086 события. Такое превышение сигнала над фоном исключает нулевую гипотезу на уровне 6,8 стандартного отклонения. Количество нейтринных событий в эксперименте оказалось больше ожидаемых 4,2 события. Однако результаты согласуются с предсказанием на основе компьютерного моделирования в рамках полученных ошибок. Большой адронный коллайдер становится новым инструментом для изучения нейтрино в пока плохо изученной области энергий. О том, какие новые технологии используют при изучении нейтрино в области низких энергий мы беседовали с Дмитрием Акимовым, представителем коллаборации COHERENT.