Изменение валентности редкоземельных элементов в сплавах со смешанной валентностью при повышении температуры сопровождается электронным топологическим переходом, при котором электроны меняют локализованное состояние на подвижное. К такому выводу пришли американские ученые, изучив с помощью рентгеновской фотоэлектронной спектроскопии сплав иттербия и алюминия. Работа опубликована в Nature Communications.
Понятие валентности — количества связей, которое может образовывать тот или иной элемент, — является одним из базовых в химии. И если в простых отдельных молекулах валентность определяется однозначно, то в химических комплексах и в кристаллических веществах определить валентность бывает несколько сложнее, потому что не всегда можно точно определить количество и направленность образованных связей.
Сейчас из-за неоднозначности определения валентности чаще используются термины «степень окисления» (описывает электронное состояние атома) и «координационное число» (описывает количество ближайших атомов-соседей). Наиболее актуальна проблема определения валентности и связи ее с электронным состоянием стоит для материалов, в которых один из элементов проявляет смешанную степень окисления, которая может при этом изменяться при понижении или повышении температуры. Однако до настоящего дня было не очень понятно, что при изменении степени окисления происходит в сплаве с теми электронами, которые освободились и не участвуют больше в образовании химических связей.
В своей работе химики из США изучали модельную систему — сплав алюминия и иттербия состава YbAl3, в котором атом иттербия находится в состоянии со смешанной валентностью. В таком сплаве из-за наличия упорядоченных систем магнитных примесей происходит снижение сопротивления, и иттербий проявляет две степени окисления: +2 и +3, — в которых на внешнем электронном уровне 4f находится 14 и 13 электронов, соответственно. Известно, что при снижении температуры от комнатной до 30 кельвинов (-243 градуса Цельсия) происходит уменьшение средней валентности примерно на 0,05. Но что при этом происходит с электронной структурой внутри кристалла, измерить не удавалось из-за сложностей при получении монокристалла с поверхностью достаточного качества. В новой работе для решения этой проблемы химики использовали тонкую пленку сплава, нанесенного на подложку с помощью молекулярно-лучевой эпитаксии, и исследовали ее с помощью рентгеновской фотоэлектронной спектроскопии с угловым разрешением.
Оказалось, что в таком материале часть электронов локализована и находится вблизи атомов иттербия, а часть электронов — подвижная и может находиться в нелокальном состоянии, перескакивая между атомами. Изменение силы взаимодействия между электронами разных типов при изменении температуры и давления может приводить к флуктуациям валентности иттербия. Электронная структура атома иттербия представляет из себя облако электронов вокруг ядра, размер которого увеличивается при понижении температуры. В обратном пространстве это выглядит как постепенное уменьшение заселенности соответствующего маленького электронного кармана.
Это приводит к тому, что постепенно увеличивается подвижность электронов на низкоэнергетических уровнях 4f, при этом увеличивается время жизни этих электронов и площадь соответствующего пика в спектре. Это означает, что смена валентности при изменении температуры (или давления) сопровождается сильным перестроением электронной структуры иттербия и электронным топологическим переходом.
По словам авторов работы, полученные результаты свидетельствуют о сильном влиянии изменения валентности на электронную структуру внутри металлических сплавов с подобными свойствами. Ученые ожидают, что в будущем эти данные смогут использоваться и для управления электронными свойствами металлических сплавов с повышенным сопротивлением.
В органических молекулах определить валентность атомов углерода значительно проще, но при этом она очень редко изменяется и практически для всех соединений равна четырем. Сейчас известно только несколько соединений, в которых углерод проявляет валентность пять, а совсем недавно ученым впервые удалось получить органическое соединение, в котором углерод связан сразу с шестью другими атомами.
Александр Дубов
Это подтвердили лабораторные эксперименты
Астрономы путем лабораторных экспериментов подтвердили идею образования красной окраски тел Пояса Койпера за счет облучения галактическим космическими лучами льдов, содержащих органические вещества. За красный цвет Макемаке или Орка могут в первую очередь отвечать ароматические углеводороды, такие как фенантрен. Статья опубликована в журнале Science Advances. Пояс Койпера представляет собой обширную область за пределами орбиты Нептуна, населенную более чем ста тысячами тел, богатых льдом и оставшихся после формирования Солнечной системы. Наблюдения за этими объектами выявили наличие на них замороженных летучих веществ, таких как метан, аммиак, вода, угарный и углекислый газ, и метанол, а также разнообразие в окраске, видимой в оптическом диапазоне — от синеватого до ультракрасного. Предполагается, что цвет может быть результатом вариаций состава исходного вещества из протосолнечной туманности или же быть связанным с эволюцией поверхностного слоя транснептуновых объектов под действием ионизирующего излучения. В частности, красноватый цвет связывают с наличием толинов — тугоплавких, полимероподобных органических веществ, образовавшихся в результате воздействия на льды частиц космических лучей и излучения Солнца. Понимание природы цвета транснептуновых объектов важно для определения механизмов их эволюции, а также роли в зарождении жизни на Земле, так как короткопериодические кометы, способные доставлять на Землю воду и органические вещества, могут быть из Пояса Койпера. Группа астрономов во главе с Ральфом Кайзером (Ralf I. Kaiser) из Гавайского университета представила результаты поисков природы красноватой окраски некоторых объектов пояса Койпера. Они проанализировали данные спектроскопических исследований поверхностей транснептуновых объектов и сравнили их с результатами лабораторных экспериментов по облучению льдов в сверхвысоком вакууме. В работе в качестве реальных представителей Пояса Койпера рассматривались красноватые тела, расположенные на расстоянии от 39 до 44 астрономических единиц от Солнца, такие как карликовая планета Макемаке и кандидаты в карликовые планеты Орк и Салация. В экспериментах велось облучение электронами метанового (13CH4) и ацетиленового (13C2H2) льдов дозами до 80 электронвольт на атомную единицу массы при температурах от 10 до 40 кельвинов. Таким образом ученые имитировали облучение углеводородов на поверхностях тел Пояса Койпера потоком галактических космических лучей на протяжении времени до 1800 миллионов лет при дистанции около 40 астрономических единиц от Солнца. Льды, содержащие изотоп 13С, брались специально, чтобы учитывать только результаты экспериментов. Оказалось, что ароматические соединения, содержащие до трех бензольных колец, такие как фенантрен (C14H10), фенален (C9H10) и аценафтилен (C12H8), играют ключевую роль в получении красноватых цветов. При этом покраснение и потемнение льдов сопровождается выделением молекулярного водорода в газовую фазу, что ведет к истощению содержания водорода и обогащению углеродом. Самая высокая доза облучения дала более красный цвет льдам, чем наблюдаемые в природе, особенно для облученного ацетилена. Это может означать либо то, что ацетилена на телах Пояса Койпера меньше, чем кажется, или что время облучения космическими лучами ограничено, например, бомбардировкой микрометеоритами. Кроме того, выяснилось, что, хотя цвета облученных льдов сильно зависят от дозы облучения, они инвариантны по отношению к температуре при нагревании образцов от 10 до 300 кельвинов во время экспериментов по выделению молекулярного водорода. Это контрастирует с отсутствием ультракрасных цветов комет и других тел, прибывших во внутреннюю Солнечную систему из внешней. Возможно это связано с тем, что облученное вещество может быть выброшено с поверхности объекта или погребено под новыми слоями. В дальнейшем ученые планируют расширить список льдов, с которыми будут вестись эксперименты по облучению — это будут льды из двух и трех компонентов, а также с минеральными добавками. Вы хорошо знаете обитателей пояса Койпера и окрестностей? Пройдите наш тест «Занептуныши», посвященный его населению.