Химики разработали фотокатализатор на основе оксида меди и оксида цинка, который позволяет превращать углекислый газ в метан при воздействии солнечного света, причем использование такого катализатора позволило полностью избежать образования побочных продуктов. Исследование опубликовано в Nature Communications.
Увеличение содержания углекислого газа в атмосфере называют одной из возможных причин глобального потепления. Для того, чтобы хоть как-то снизить уровень углекислого газа, ученые предлагают использовать его в качестве химического источника при конверсии в другие углеродсодержащие вещества. Например, недавно был предложен способ восстановления атмосферного углекислого газа до метанола. Многократно предпринимались попытки разработки эффективных способов конверсии углекислого газа в углеводородное топливо. Обычно для этого используются катализаторы на основе оксида титана (IV), однако их использование приводит к получению большого количества побочных продуктов — в частности, водорода.
В своей новой работе химики из Кореи предложили новую конфигурацию фотокатализатора, состоящего из оксида цинка и оксида меди (I), который позволяет с высокой эффективностью восстанавливать атмосферный углекислый газ до метана. Для получения катализатора химики использовали двухстадийный синтез из ацетилацетонатов меди и цинка. В результате удалось добиться получения сферических наночастиц оксида цинка, покрытых небольшими кубическими нанокристаллами оксида меди (I).
Оказалось, такие наночастицы являются фотокатализаторами для конверсии углекислого газа в метан. Реакция проходит при комнатной температуре при облучении светом в видимой и ультрафиолетовой областях в водной среде. То есть в ней участвует углекислый газ, предварительно растворенный в воде. Активность катализатора составила 1080 микромоль в час на 1 грамм катализатора. Концентрация метана в образовавшейся смеси газов превысила 99 процентов. Причиной такой высокой эффективности катализатора авторы работы называют соотношение энергий запрещенных зон в оксидах меди и цинка, которое приводит к более эффективному переносу заряда между компонентами.
Кроме того, ученые сравнили свойства предложенного катализатора с наиболее эффективным катализатором, который использовался для конверсии углекислого газа до этого. Оказалось, что катализатор такой же массы за то же время позволяет получить примерно в 15 раз меньше метана, чем новый. Кроме того, содержание водорода в образованной смеси примерно в 4 раза больше содержания метана.
По словам ученых, предложенный ими катализатор не только может быть использован для эффективной конверсии углекислого газа в метан, но и является источником информации о механизмах протекания подобных реакций при участии фотокатализаторов.
Для уменьшения количества углекислого газа в атмосфере используются и другие методы. Например, недавно на одной из электростанций в Исландии запустили модуль, который улавливает атмосферный углекислый газ.
Александр Дубов
Возбудили его с помощью фотокатализатора
Американские химики обнаружили фотохимическую реакцию циклопропанирования двойных связей соединениями с активной метиленовой группой. Они выяснили, что в присутствии кислорода, фотокатализатора и источника иода эти распространенные нуклеофилы реагируют с обычными алкенами — при этом образуется трехчленный углеродный цикл. Кроме того, авторы статьи в Science исследовали механизм открытой реакции. Трехчленные углеродные кольца — циклопропаны — часто встречаются в молекулах биологически активных веществ. Например, такое кольцо есть в нирматрелвире — одном из компонентов недавно одобренного FDA лекарства от ковида. И поэтому циклопропанам, в отличие от, например, четырехчленных циклобутанов, химики посвящают много исследований. Сейчас самый распространенный метод синтеза циклопропанов — это реакция между алкеном и диазосоединением. Чтобы его использовать, нужно получать часто неустойчивые при хранении (а иногда даже взрывчатые) диазосоединения. Кроме того, для протекания такой реакции обычно нужны медные или родиевые катализаторы. Но недавно химики под руководством Рамеша Гири (Ramesh Giri) из Университета штата Пенсильвания нашли метод циклопропанирования алкенов без диазосоединений. Сначала они предположили, что в присутствии фотокатализатора и окислителя метиленовые фрагменты, соседние с двумя акцепторными группами, смогут образовывать радикалы, которые и будут присоединяться к двойной связи алкена. Чтобы проверить эту гипотезу, химики провели несколько тестов. Они смешивали алкен 4-фенилбутен с диэтилмалонатом в присутствии разных перекисных окислителей и фотокатализатора 4CzIPN при облучении синим светом. В одном из экспериментов, когда химики добавили в реакцию циклогексилиодид и использовали кислород в качестве окислителя, образовался нужный циклопропан. Далее, чтобы изучить механизм реакции, химики провели несколько контрольных экспериментов. Они показали, что под действием возбужденной фотокатализатором молекулы кислорода на метиленовом фрагменте одного из реагентов возникает радикальный центр, который перехватывается алкеном с последующим образованием циклопропана. Кроме того, с помощью УФ-спектроскопии ученые выяснили, что во время протекания процесса циклогексилиодид окисляется с образованием иода. Он, в свою очередь, восстанавливается до иодид-анионов с помощью образующейся в смеси перекиси водорода, а затем уже в форме аниона выступает восстановителем для фотокатализатора. Далее химики протестировали свою реакцию на разных алкенах. Оказалось, что у реакции два основных ограничения: стиролы, в которых двойная связь присоединена к бензольному кольцу, и сопряженные диены. Из них циклопропаны получить не удалось. Так химики разработали реакцию фотохимического синтеза циклопропанов и исследовали ее механизм. Авторы статьи надеются, что вскоре получится разработать более общие условия процесса, которые позволят получать циклопропаны из стиролов и диенов. Недавно мы рассказывали о том, как химики воспользовались таким же фотокатализатором для проведения реакций кросс-сочетания.