Физики из Австрии и Германии теоретически исследовали магнитную левитацию наночастиц в статическом магнитном поле. Оказалось, что в слабых полях устойчивость частиц обеспечивается эффектом Эйнштейна-де Гааза, а в сильных — ларморовской прецессией. Статья опубликована в Physical Review Letters.
В отсутствие внешних сил, например, гравитации или упругости, любая равновесная система зарядов будет неустойчивой (этот факт известен как теорема Ирншоу). Грубо говоря, такое равновесие похоже на равновесие балансирующего на острие карандаша. Статическое магнитное поле в этом плане не отличается от электрического, а значит, подвешенные в нем системы также должны быть неустойчивы. Тем не менее, существует несколько способов обойти эту проблему.
Один из таких способов — механически закрутить магнит, что стабилизирует его и создаст эффективную потенциальную яму. Примером такой конструкции является левитрон, который представляет собой небольшой магнитный волчок. С другой стороны, на атомном уровне такая стабилизация возможна благодаря эффекту ларморовской прецессии спина частицы. В этой работе ученые теоретически показали, что для наномагнитов, которые находятся в промежуточном положении между этими двумя случаями, реализуются оба механизма стабилизации в зависимости от силы приложенного магнитного поля.
Для этого физики моделировали наномагниты как сферическое твердое тело с магнитокристаллической анизотропией, которое они помещали в статическое магнитное поле Иоффе — Притчарда. Действием гравитации ученые пренебрегали из-за относительно малой массы наночастицы. Затем они нашли в квазиклассическом приближении положение равновесия частицы в таком поле и исследовали его на устойчивость. Тепловыми флуктуациями ученые также пренебрегли.
Оказалось, что в слабых полях бóльшую роль играет взаимодействие, возникающее из-за анизотропии наномагнита, и частица приобретает вращательный момент благодаря эффекту Эйнштейна-да Гааза. В этом случае суммарный спин частицы заблокирован в направлении анизотропии из-за закона сохранения энергии. С другой стороны, в сильных полях анизотропией можно пренебречь, и важнее оказывается эффект ларморовской прецессии спина. Эти результаты можно получить непосредственно из анализа характеристических многочленов матрицы модели.
Авторы считают, что этот эффект может иметь приложения в различных областях квантовой динамики, например, для сжатия спинов и улучшения чувствительности магнитных сенсоров.
В прошлом году компания Levitation Works анонсировала левитирующее зарядное устройство для умных часов. Также недавно мы писали о том, как ученые из Университета Сассекса разработали прототип акустического левитатора, предназначенного для удержания и переноса по воздуху капель и кусочков пищи.
Дмитрий Трунин
Физикам помогла простая математическая модель
Британские теоретики попытались разобраться, почему при слишком мелком помоле эспрессо получается невкусным. Для этого они построили простую модель протекания жидкости через два канала с пористым молотым кофе. Оказалось, что слишком мелкий помол запускает механизм с положительной обратной связью, из-за которого жидкость течет только по одному из каналов. Кофе во втором канале при этом остается недоэкстрагированным. Исследование опубликовано в Physics of Fluids. Для приготовления эспрессо нужно пропускать достаточно горячую воду под большим давлением через фильтр с молотым кофе. Люди научились готовить эспрессо еще в XIX веке, и с тех пор методом проб и ошибок сложилась практика получения наилучшего вкуса кофе. Однозначно формализовать качество кофе непросто, но чаще всего специалисты ориентируются на уровень (или выход) экстракции кофе — массовую долю растворившихся в воде химических компонентов зерен. В попытках разобраться в том, какая физика стоит за приготовлением эспрессо, несколько лет назад Фостер с коллегами провели экспериментальное и численное исследование этого процесса. Ученые уделили особое внимание помолу: модель предсказывала, что, чем меньше размер зерен, тем больше экстракция. Но эксперименты показали, что так происходит лишь до определенного порога, меньше которого уровень экстракции начинает снижаться. Этот эффект известен баристам давно. Его объясняют тем фактом, что при слишком мелком помоле в таблетке с кофе пробиваются паразитные каналы, через которые вода почти полностью утекает, игнорируя остальную кофейную массу. Фостер с коллегами учли этот факт, дополнительно наложив на модель ограничение на площадь экстракции. Тем не менее, остается проблема учета этого эффекта из первых принципов. Уильям Ли (William Lee) из университета Хаддерсфилд был одним из соавторов статьи Фостера. Ранее он с коллегами уже проводил независимые вычисления, связанные варкой кофе. На этот раз целью его группы стал вопрос о том, как именно происходит неравномерная экстракция при варке методом эспрессо. Для ответа на этот вопрос, физики построили довольно простую модель просачивания жидкости через два канала с пористым веществом. За основу они взяли уравнение Козени — Кармана, выведенное для упаковки сферических частиц. Вместе с ним авторы учли тот факт, что вещество помола экстрагируется в жидкость, уменьшая объем порошка. Решая полученные дифференциальные уравнения, физики смогли качественно воспроизвести главный эффект: по мере уменьшения размера зерен выход экстракции также спадает. Динамика потоков по каждому из каналов позволила понять, почему так происходит. Оказалось, все дело в механизме положительной обратной связи: чем больше протекает воды через канал, тем больше извлекается вещества и тем больше становится его пористость, а значит тем меньше сопротивление канала. В какой-то момент поток в одном из каналов становится максимальным, а в противоположном — падает почти до нуля. Несмотря на качественное объяснение, которое дала модель, ее количественные оценки разошлись с экспериментальными данными. Этот факт авторы объяснили простотой модели. В частности, они не учли стратификацию кофейной массы, а также использовали мономодальное распределение частиц, вместо бимодального, которым обладает реальный помол. Помимо усложнения модели, физики планируют включить в нее альтернативное объяснение эффекта, связанного с мельчанием помола, который заключается в закупоривании каналов зернами. Кофе — это один из немногих продуктов и в целом аспектов человеческой деятельности, который исследует огромное количество научных дисциплин от математики до экспериментальной психологии. Подробнее об этих исследованиях читайте в серии материалов и блогов «Сварен на калькуляторе», «Кофе (не) убьет», «Чашечку кофе?», «Кофе: проклятие четырех чашек».