Китайский прототип грузового беспилотного летательного аппарата AT200 27 октября 2017 года совершил первый полет, сообщает «Синьхуа». Аппарат, разработанный Институтом инженерной теплофизики, поднялся в воздух с одного из аэродромов в провинции Шэньси. В общей сложности беспилотник провел в воздухе 26 минут. Его испытания признаны успешными.
Сегодня множество компаний занимаются исследованиями в области доставки почты и грузов с помощью беспилотников. Считается, что такие аппараты позволят быстро и относительно дешево перевозить грузы. Однако аппараты, проходящие в настоящее время испытания, не способны оперировать большими по массе грузами.
Перспективный китайский беспилотник, создаваемый для гражданского использования, имеет максимальную взлетную массу 3,4 тонны. Аппарат, выполненный на базе новозеландского многоцелевого самолета PAC P-750 XSTOL, рассчитан на перевозку грузов массой до 1,5 тонны.
AT200 может развивать скорость до 313 километров в час и выполнять полеты на расстояние до 2,2 тысячи километров. Аппарат может выполнять полеты на высоте до 6,1 тысячи метров. Для взлета и посадки беспилотнику, как утверждают разработчики, необходима полоса длиной всего 200 метров. AT200 может взлетать и садиться автоматически.
Китайские разработчики полагают, что новый грузовой беспилотник можно будет использовать для перевозки грузов в условиях гор или между островами.
В январе текущего года Германский аэрокосмический центр (DLR) приступил к разработке нового большого транспортного беспилотника, который будет использоваться для доставки грузов в районы, пострадавшие от стихийного бедствия, и срочной перевозки запчастей. Аппарат будет выполнять полеты на малой высоте в едином воздушном пространстве.
Новый транспортный беспилотник, разрабатываемый DLR, сможет перевозить различные грузы массой до одной тонны. Завершить проектирование нового аппарата планируется до конца 2017 года. Помимо участия в гуманитарных и спасательных операциях, дрон планируется задействовать и в обычных грузовых перевозках.
Василий Сычёв
Он позволяет подключать до шести роборук одновременно
Инженеры и дизайнеры из Японии разработали прототип модульной системы дополнительных носимых роборук JIZAI ARMS. Система состоит из базового блока, который надевается на спину как рюкзак, а уже к нему можно присоединять до шести роботизированных конечностей. Доклад с описанием разработки представлен в рамках конференции CHI ’23. Инженеры достаточно давно экспериментируют с носимыми дополнительными конечностями. Как правило, это роборуки, которые крепятся к торсу или спине человека и управляются либо им самим, либо оператором. Однако существующие прототипы чаще всего выполнены в виде одной руки или дополнительной пары — например, именно так выглядели роборуки, представленные в 2019 году группой инженеров под руководством Масахико Инами (Masahiko Inami) из Токийского университета. Теперь японские инженеры и дизайнеры под руководством Нахоко Ямамуры (Nahoko Yamamura) из Токийского университета при участии Масахико Инами разработали носимую систему JIZAI ARMS, которая поддерживает сразу шесть роборук. Система имеет модульную конструкцию, в основе которой находится базовый блок. Он надевается на спину человека как рюкзак и удерживается в плотном контакте с телом за счет нескольких ремней. Блок имеет шесть портов для установки быстросъемных робоконечностей. Порты попарно расположены в разных плоскостях чтобы установленные руки не мешали движению друг друга. Каждый порт имеет электрический разъем в центре и энкодер для определения угла, под которым прикреплена роботизированная рука. Масса базового блока составляет 4,1 килограмм. А общая масса системы вместе с четырьмя подсоединенными к терминалам руками достигает 14 килограмм. Длина роборук подбиралась такой, чтобы при вытягивании их вперед перед пользователем быть приблизительно равной длине его рук. Кисти роборук съемные и при необходимости их можно заменить захватами другого типа. Также дизайнеры постарались придать робоконечностям анатомическое сходство с человеческими руками. Система может управляться через приложение на персональном компьютере, а также с помощью контроллера, выполненного в виде уменьшенной вдвое копии базового модуля и присоединенных к нему роборук. Если пользователь или сторонний оператор изменяет положение рук на контроллере, то это приводит к аналогичным движениям робоконечностей на полноразмерном прототипе. Авторы отмечают сложность управления несколькими руками одновременно, для этого им приходилось задействовать сразу несколько операторов. В дальнейшем исследователи планируют изучить впечатления и ощущения людей от длительного ношения и использования модулей с дополнительными конечностями. https://www.youtube.com/watch?v=WZm7xOfUZ2Y На сегодняшний день отсутствие эффективных систем управления — главное препятствие на пути внедрения систем дополнительных носимых рук. Однако, как продемонстрировали инженеры из Японии, в будущем, возможно, удастся научить людей управлять дополнительными конечностями с помощью нейроинтерфейсов.