Специалисты из Робототехнической лаборатории Корейского исследовательского института атомной энергии (KAERI) предложили для мониторинга состояния промышленных сооружений использовать робозмею в паре с мультикоптером, который будет ее оперативно доставлять в нужное место. Видео, демонстрирующее совместные действия роботов, опубликовано на YouTube.
Роботы нередко используются для мониторинга состояния различных конструкций и систем. Дроны обычно используются для наблюдений на открытой местности и могут следить за состоянием мостов, сооружений, ЛЭП и трубопроводов, однако плохо подходят для работы в сложном окружении. В то же время, для такой работы подходят медленные ползающие роботы, которые часто выполняются в виде робозмеи. В частности, такие роботы смогут, например, найти место утечки в переплетении труб на каком-либо заводе.
Робозмеи, состоящие из большого количества сочленений, могут передвигаться в самых разных условиях, однако из-за своей конструкции неспособны развивать большую скорость и при необходимости оперативной локализации утечки их нужно быстро доставить на место проведения работ. Инженеры KAERI предложили для этого использовать мультикоптер, который работает как транспортная платформа для быстрой перевозки робозмеи с места на место.
Мультикоптер оборудован манипулятором для захвата робозмеи, а она, в свою очередь, при приближении дрона принимает C-образную форму, облегчая захват. После того, как робот доставлен на новое место, он разворачивается обратно и может продолжать работу, в то время как дрон может независимо работать с воздуха.
Это не первая попытка использовать летающий беспилотник в качестве напарника. Ранее специалисты из Швейцарской высшей технической школы Цюриха (ETH) научили четырехногого шагающего робота использовать данные о будущем маршруте, полученные при помощи мультикоптера, а сингапурская компания Otsaw представила патрульного колесного робота O-R3, который оснащен беспилотником для преследования нарушителей. Кроме того, существует интересный патент у Amazon — компания описала концепцию дрона-напарника для полицейских. Такой аппарат можно было бы использовать в качестве «летающего видеорегистратора», поиска потерявшегося в толпе ребенка или автомобиля на парковке.
Его система управления автоматически находит оптимальные точки в воздушных потоках
Инженеры разработали алгоритм управления для беспилотников самолетного типа, который позволяет парить на восходящих воздушных потоках, расходуя в 150 раз меньше энергии, чем при активном полете с работающим двигателем. Алгоритм отслеживает и подстраивается под непрерывно изменяющиеся воздушные потоки, сохраняя высоту. Препринт доступен на arXiv.org. При поддержке Angie — первого российского веб-сервера Беспилотники самолетного типа более энергоэффективны, чем мультикоптеры. Благодаря крыльям они способны преодолевать большие дистанции и могут гораздо дольше находиться в воздухе. Причем эти параметры могут быть увеличены за счет парения — планирующего полета, в котором аппарат использует восходящие воздушные потоки для удержания в воздухе без использования тяги двигателей, аналогично тому, как это делают некоторые птицы. Группа инженеров под руководством Гвидо де Круна (Guido de Croon) из Делфтского технического университета разработала систему управления, которая позволяет беспилотникам самолетного типа без какой-либо предварительной информации о поле ветра самостоятельно находить оптимальные точки в восходящих воздушных потоках и использовать их для длительного парения с минимальным расходом энергии. В системе управления вместо обычного ПИД-регулятора используется метод инкрементальной нелинейной динамической инверсии, контролирующий угловое ускорение, подстраивая его под желаемые значения. Система управления может без изменения настроек работать и в режиме парения, и при полете с включенным двигателем во время поиска новых оптимальных точек в воздушных потоках или для компенсации резких порывов ветра. Для поиска оптимальных точек в поле ветра, в которых скорость снижения полностью компенсируется восходящим потоком воздуха, применяется алгоритм имитации отжига. Он случайно выбирает направления в пространстве пытаясь найти такую точку, в которой беспилотник может устойчиво лететь с минимально возможной тягой двигателя. Для тестов инженеры построили 3D-печатный прототип на основе модели радиоуправляемого самолета Eclipson model C. Он имеет размах крыла 1100 миллиметров и массу 716 грамм вместе с аккумуляторной батареей. В качестве полетного контроллера применяется Pixhawk 4. Помимо установленного под крылом и откалиброванного в аэродинамической трубе сенсора скорости, беспилотник имеет GPS-модуль для отслеживания положения во время полетов на открытом воздухе. В помещении применяется оптическая система Optitrack. Испытания проводились в аэродинамической трубе, возле которой установили наклонную рампу, для создания восходящего воздушного потока. Прототип запускали в воздушном потоке сначала на ручном управлении, после чего включали автопилот. Разработчики провели эксперименты двух типов. В первом они постепенно изменяли скорость воздушного потока от 8,5 до 9,8 метров в секунду при фиксированном угле наклона рампы. Во втором эксперименте скорость воздушного потока оставалась неизменной, зато менялся угол установки подиума. В обоих случаях алгоритм системы управления быстро находил в поле ветра точки, в которых мог поддерживать планирующий полет в течение более чем 25 минут, лишь изредка задействуя тягу двигателя в среднем лишь на 0,25 процента от максимальной, хотя при таких значениях воздушного потока для поддержания обычного полета требуется около 38 процентов. При изменении поля ветра из-за изменившегося угла наклона рампы или скорости воздушного потока алгоритм успешно находил и удерживал новое положение равновесия. В будущем инженеры планируют провести испытания на открытом воздухе. https://www.youtube.com/watch?v=b_YLoinHepo Американские инженеры и планетологи предложили использовать планер, способный длительное время держаться в воздухе за счет восходящих потоков и термиков, для изучения каньонов Марса. Предполагается, что такие аппараты с надувными разворачиваемыми крыльями могут стартовать с аэростата или дирижабля и затем планировать в атмосфере Марса от 20 минут до суток.