Коллектив ученых из Принстонской лаборатории физики плазмы смог найти способ подавить возникновение альфвеновских неустойчивостей в токамаках. Интересно, что подавления удалось добиться, вводя в плазму дополнительный пучок нейтральных частиц, почти такой же, какой и вызывает эти неустойчивости. Это позволит увеличить устойчивость плазмы и повысить ее энергию как на уже работающих магнитных термоядерных реакторах, так и на строящемся сейчас Международном экспериментальном термоядерном реакторе во Франции. Исследование опубликовано в Physical Review Letters.
Токамаки — камеры с магнитными катушками — устройства для удержания высокоэнергетической плазмы с помощью магнитных полей. Такие устройства используются для исследования процессов слияния легких высокоэнергетических ионов, важных для проведения управляемого термоядерного синтеза. Кроме магнитного поля, токамак обеспечивает образование в плазме электрического тока, который приводит к нагреванию плазмы до нужной температуры. Сейчас работают несколько крупных токамаков различных конфигураций, а самый крупный — Международный экспериментальный термоядерный реактор ITER (ИТЭР) — строится на юге Франции и планирует начать эксперименты в 2025 году.
В современных токамаках для нагрева и повышения устойчивости плазмы в нее вводят дополнительный поток нейтральных частиц. Это приводит к образованию низкочастотных электромагнитных волн в плазме, которые распространяются вдоль постоянного магнитного поля. В результате возникают альфвеновские волны — поперечные магнитогидродинамические плазменные волны, распространяющиеся вдоль силовых линий магнитного поля. С одной стороны, они позволяют контролировать профиль распределения ионов в плазме и таким образом увеличить ее стабильность, но с другой — сами могут приводить к возникновению дополнительных неустойчивостей, и значительная часть ионов в такой плазме рассеивается, не сталкиваясь. Возможность предсказывать устойчивость альфвеновских волн и разработка методов для управления ими важна в том числе для таких установок, как ИТЭР, в которых необходимая температура плазмы поддерживается как раз за счет введения пучков альфвеновских частиц.
В своей новой работе физики из Принстонской лаборатории физики плазмы, работающие на сферическом токамаке NSTX-U, предложили новый способ подавить альфвеновские неустойчивости за счет введения в плазму дополнительных пучков нейтральных частиц. В процессе последнего масштабного обновления токамака в 2015 году был установлен модуль, позволяющий вводить в плазму дополнительный пучок нейтральных частиц. Обычно введение дополнительных высокоэнергетических частиц приводит только к росту неустойчивости, но в данном случае физикам с помощью изменения угла введения пучка частиц и их энергии удалось добиться того, что он приводит к перераспределению высокоскоростных ионов и управляемо подавляет неустойчивость, возникшую изначально. В данном исследовании в плазму вводились три нейтральных пучка для повышения уровня контроля плазмой и еще три дополнительных нейтральных пучка — для подавления альфвеновской неустойчивости. Такая система позволила создать контролируемую устойчивую высокоэнергетическую плазму.
Помимо прочего, этот эффект удалось продемонстрировать не только экспериментально, но и с помощью компьютерного кода HYM, который разрабатывается для ИТЭР. Компьютерная модель позволила количественно оценить частоты альфвеновских мод и предсказала как образование неустойчивостей, так и подавление этих неустойчивостей за счет введения дополнительных нейтральных пучков. Таким образом, удалось показать надежность предсказаний устойчивости плазмы, сделанных с помощью использования HYM.
Для управляемого термоядерного синтеза на ИТЭР планируется использование мощности до 500 мегаватт и временем удержания до 1000 секунд. Сейчас работы над управляемым термоядерным синтезом ведутся различными группами. Например, на токамаке KSTAR удалось удалось удерживать плазму температурой 50 миллионов Кельвинов в течение 70 секунд, а после этого китайские физики на токамаке EAST смогли увеличить это время до 100 секунд. Кроме того, существуют и частные компании, которые тоже работают над термоядерным синтезом - подробнее о них можно прочитать в нашем материале.
Александр Дубов
Для этого физики упрятали почти четыре тонны жидкого ксенона под гору
Физики из коллаборации PandaX поделились результатами поиска следов электромагнитного взаимодействия обычной и темной материй. Для этого они искали отклонения в числе фотонов, рожденных в 3,7 тонны жидкого ксенона, от модельного предсказания. Отрицательный результат позволил наложить новые ограничения на все типы электромагнитных свойств гипотетических частиц. Исследование опубликовано в Nature. Поиск частиц темной материи — важнейшая задача, над которой физики и астрономы бьются уже почти век. Ее существование доказывают наблюдения за движением галактик и реликтовым излучением, но, несмотря на это, ученые до сих пор не понимают, из чего она состоит. Подробнее про темную материю читайте в материале «Невидимый цемент Вселенной». Среди прочего физики спорят, участвуют ли частицы темной материи в электромагнитном взаимодействии. Само определение «темная» подразумевает отрицательный ответ, однако, это может лишь значить, что такое взаимодействие слишком слабое, чтобы его могли зафиксировать общие наблюдения и эксперименты. Темная материя может состоять из миллизаряженных частиц или частиц с неточечным зарядом, либо частиц с малым электрическими или магнитными дипольными моментами, анапольными моментами и так далее. Поиск следов такого взаимодействия ведется на самых различных установках. Среди прочего, этим заняты физики из коллаборации PandaX-4T, работающие в зале B2 Китайской подземной лаборатории Цзиньпин. Ученые исследуют гипотетический процесс, при котором частица темной материи обменивается фотоном с ядром вещества. Модели предсказывают, что его итогом должно стать излучение, испущенное ускоренным ядром, и излучение, испущенное электронами, оторвавшимися от ядра. Чтобы отыскать такие пары сигналов, физики наполняли свой детектор 3,7 тонны жидкого ксенона, окруженного с двух сторон массивами фотоумножителей. При анализе данных, собранных за 86 дней измерений, ученые учитывали множество фоновых процессов: бета-распады прочих ядер, естественную радиоактивность материалов детектора, влияние солнечных нейтрино и так далее. В результате оказалось, что учета фоновых процессов достаточно, чтобы объяснить происхождение более тысячи событий, зарегистрированных установкой. Результат эксперимента накладывает ограничения на известные электромагнитные модели частиц темной материи в диапазоне масс от 20 до 40 гигаэлектронвольт. Так, из него следует, что зарядовый радиус этих частиц не превышает 1,9 × 10-10 фемтометра, миллизаряд — 1,9 × 10-10 заряда электрона, а электрический и дипольный моменты — 1,2 × 10-23 заряда электрона на сантиметр и 4,8 × 10-10 магнетона Бора, соответственно. Ограничению подвергся также анапольный момент: 1,6 × 10-33 квадратного сантиметра, что почти в три раза меньше, чем предел, полученных в предыдущем исследовании. В качестве иллюстрации авторы сравнили свои ограничения с таковыми для других распространенных заряженный частиц: нейтрона и нейтрино, полученными другими группами. Предел для зарядового радиуса темной частицы оказался на четыре порядка строже, чем у нейтрино, пределы электрического дипольного момента и анапольного момента заняли промежуточное положение между таковыми для нейтрона и нейтрино, а предел магнитного момента оказался на один порядок слабее нейтринного. Ранее мы писали про то, как предыдущая версия детектора PandaX-4T — PandaX-II, — наполненная 0,57 тонны жидкого ксенона, помогла ограничить самодействующую темную материю.