Американская компания Microsoft разработала беспилотный планер с системой искусственного интеллекта, которая способна в полете учиться более эффективному поиску термиков. Так называют поднимающиеся массы теплого воздуха. Согласно сообщению компании, обучение позволит отладить алгоритм принятия решений в условиях непредсказуемого окружения, чтобы потом использовать его в других областях, включая наземный транспорт и авиацию.
Существующие системы искусственного интеллекта способны без сбоев выполнять различные задачи в условиях, когда окружение предсказуемо. При этом непредсказуемое воздействие может существенно ухудшить выполнение той или иной задачи. Для того, чтобы роботы могли действовать в непредсказуемых условиях, исследователи используют различные подходы, которые основаны на самообучении.
Для обучения искусственного интеллекта на испытываемом планере исследователи объединили марковский процесс принятия решений с байесовским укрепляющим обучением. Первый служит математической основой для моделирования принятия решений в ситуациях, когда исход частично случаен и частично зависит от того, кто принимает решение. Второе представляет собой модель самообучения методом проб и ошибок в условиях неопределенности.
Как утверждают разработчики, такое совмещение позволяет системе искусственного интеллекта после запуска планера узнавать важные для длительного полета детали об окружающей среде и впоследствии использовать их для правильного принятия решений. Последнее производится методом древовидного поиска Монт-Карло. Это эвристический алгоритм выбора наиболее перспективной последовательности действий.
Испытания планера проводятся на полигоне Армии США в Неваде. Аппарат оснащен вычислительной системой, системой управления и электромотором с воздушным винтом. Именно с помощью электромотора производится запуск планера и набор им высоты, после чего двигатель отключается и включается только в том случае, если оператору нужно перехватить управление. В штатном режиме планер проводит весь полет в автономном режиме.
Масса аппарата составляет 5,7 килограмма. В воздухе беспилотник регулярно передает на пульт оператора данные о своем полете. Основной задачей планера является поиск термиков и использование их для продления собственного полета. Какие именно системы для изучения окружающего мира установлены на планере, не уточняется. Разработчики Microsoft утверждают, что они намерены научить планер находить и использовать термики так же, как это делают птицы.
С января прошлого года Научно-исследовательская лаборатория ВМС США проводит испытания беспилотных планеров, оснащенных системой AutoSoar. Эта система позволяет аппаратам находить термики, обмениваться друг с другом данными о них и использовать восходящие потоки воздуха для продления полета. Во время первого полета планеры поднимались на высоту тысячи метров и смогли пробыть в воздухе 2,5 часа. Второй полет продолжался уже 5,3 часа.
Василий Сычёв
Алгоритм уменьшает время простоя на 78 процентов
Инженеры из Японии создали алгоритм машинного обучения, который автоматически стимулирует таракана-киборга больше двигаться и не позволяет ему долго оставаться в одном месте. Движение таракана контролируется с помощью электроимпульсов, генерируемых рюкзачком с системой дистанционного управления. Алгоритм увеличил на 70 процентов среднюю дистанцию, пройденную киборгом, и снизил время простоя таракана на 78 процентов. Статья опубликована в Cyborg and Bionic Systems. Миниатюрные роботы могут пригодиться в самых разных сферах: от ремонта авиационных двигателей до поиска выживших под завалами. Однако из-за недостаточной развитости компактной компонентной базы, в особенности актуаторов и источников питания, это все еще сложная инженерная задача, и большинство проектов остаются на уровне лабораторных прототипов. Одно из альтернативных решений состоит в использовании живых организмов, например, тараканов или даже летающих насекомых, которые уже обладают способностью к эффективному передвижению. В их организм внедряют электроды, через которые подключаются электронные модули, контролирующие перемещения насекомого за счет электростимуляции. Однако насекомые-киборги не полностью контролируются электронными системами. Они сохраняют свои особенности поведения, которые могут ограничивать их перемещение. Например, мадагаскарские свистящие тараканы, которые часто используются в экспериментах, склонны к снижению активности в ярко освещенных областях и при недостаточно высокой температуре. Кроме того, они предпочитают бегать вдоль стен, а не по открытым пространствам. Это приводит к сложностям в использовании насекомых-киборгов и требует оптимизации стимулирующих сигналов управления. Группа инженеров под руководством Кейсуке Морисима (Keisuke Morishima) из Университета Осаки внедрила в систему управления тараканом-киборгом алгоритм машинного обучения, который позволяет автоматически стимулировать передвижение насекомого, чтобы оно не оставалось на одном месте. Так же, как и предыдущие исследователи, инженеры использовали особь мадагаскарского шипящего таракана из-за его больших размеров, достигающих семи сантиметров. Для передачи стимулирующих сигналов в усикообразные органы в задней части таракана (церки) были имплантированы платиновые электроды, соединенные медными проводами с приклеенным на спину насекомого шестиграммовым рюкзачком с электронными компонентами. Данные о движении насекомого получают с помощью встроенного в рюкзак инерционного измерительного модуля, который с помощью акселерометра и гироскопа определяет текущие линейное ускорение и угловую скорость таракана. Эта информация по беспроводному каналу связи передается на персональный компьютер на вход алгоритма машинного обучения. Из данных, разбитых на окна по 1,5 секунды, извлекаются признаки, которые затем поступают на вход классификатора, определяющего двигается насекомое или нет. В случае, если таракан остается неподвижным дольше заданного времени, на его церки подаются электрические импульсы. Наиболее эффективным алгоритмом классификации в представленной задаче оказался метод опорных векторов. Для экспериментов инженеры построили арену в форме окружности, над которой разместили камеру для отслеживания реального положения насекомого. Без дополнительной электростимуляции три таракана, использованные в тестах, стремились оставаться в периферийной области у стен арены и избегали открытого пространства большую часть времени. Использование алгоритма и электростимуляции позволило снизить время простоя в среднем на 78 процентов, а время поиска пройденную дистанцию увеличить на 68 и 70 процентов соответственно. При этом среднее время электростимуляции для всех тараканов составило всего 3,4 секунды. Таким образом алгоритм позволяет снизить количество сигналов электростимуляции и тем самым предотвратить утомление животного. Ранее мы рассказывали про американских инженеров, которые разработали носимую поворотную монохромную камеру для жуков и микророботов. Благодаря ее небольшой массе, которая составляет менее четверти грамма, насекомые с ней могут свободно двигаться и балансировать.