Исследователи из британского Бристольского университета создали инструкцию по сборке относительно дешевого акустического левитатора в домашних условиях. В состав этого левитатора входят напечатанная пластиковая стойка, ультразвуковые датчики парковки для автомобилей и микроконтроллер Arduino Nano. Подробная инструкция опубликована в журнале Review of Scientific Instruments, а краткая ее версия, а также список необходимых для сборки левитатора компонентов, 3D-модели для печати элементов его конструкции и скетч для микроконтроллера можно найти здесь.
Звук представляет собой упругую волну, перемещающуюся в твердой, жидкой или газообразной среде. Акустическая левитация представляет собой метод удержания объектов в так называемой стоячей волне. Она образуется, если направить друг на друга несколько когерентных волн. Поскольку звуковая волна представляет собой колебания давления, то в пространстве образуются области с повышенным и пониженным давлениями. При этом если объект, помещенный в стоячую волну будет в два или более раз меньше длины акустической волны, он зависнет в одной из этих областей.
Акустические левитаторы существуют уже довольно давно, хотя ее практическое применение пока не проработано. В современных акустических левитаторах, работающих с ультразвуком, используются преобразователи Ланжевена. Так называются акустические ультразвуковые излучатели, построенные на основе пьезоэлектрического диска. Эти излучатели требуют довольно точных техпроцессов изготовления и относительно дороги. Новый проект домашнего акустического левитатора позволяет собрать такое устройство с минимальными затратами.
Представленный британскими исследователями проект позволяет собрать два устройства на выбор: небольшое TinyLev и более крупное BigLev. Для первого необходимы 72 ультразвуковых излучателя от автомобильного парктроника диаметром десять миллиметров, работающих с частотой 40 килогерц. Кроме того, потребуется один напечатанный держатель датчиков. Для большей версии левитатора потребуются уже 72 излучателя диаметром 16 миллиметров и два напечатанных держателя. Общую стоимость необходимых деталей исследователи не уточняют.
Для сборки устройства потребуются также контроллер Arduino Nano, драйвер шаговых двигателей на основе микросхемы L298N, а также блок питания, провода, переключатель и кусок фанеры или пластика для изготовления подставки. В устройстве держатель излучателей представляет собой две расположенные друг напротив друга полусферы, в каждой из которых размещаются по 36 датчиков парктроника. Во время работы при температуре воздуха 25 градусов Цельсия они создают волну длиной 8,65 миллиметра, а образованная ими стоячая волна позволяет удерживать объекты диаметром не более четырех миллиметров.
Следует отметить, что идея сборки дешевого акустического левитатора в домашних условиях не нова. Например, ведущий канала WildMania на YouTube собрал крайне простое и очень дешевое такое устройство еще летом прошлого года. В нем используются только Arduino, биполярный транзистор BC548, трансформатор, резисторы и ультразвуковой излучатель от распространенного датчика HC-SR04. Во время работы излучатель создает акустическую волну, которая затем отражается обратно от предмета над устройством. При взаимодействии излученной и отраженной волн и возникает стоячая волна, в которой можно размещать объекты.
В конце июня текущего года инженеры из литовской компании Neurotechnology представили устройство для полностью бесконтактной пайки. Оно позволяет перемещать элементы по печатной плате с помощью акустической левитации и припаивать их с помощью лазера. Компания планирует доработать технологию бесконтактной пайки до уровня, при котором ее можно будет применять не в лабораторных условиях, а на производстве.
Василий Сычёв
Главная задача — ввести в строй детектор sPHENIX
Физики из Брукхэвенской национальной лаборатории, обслуживающие коллайдер RHIC, приступили к запуску 23 сезона работы. Об этом сообщает сайт лаборатории. Главная задача сезона — ввод в эксплуатацию детектора sPHENIX — обновленной версии детектора PHENIX. Вместе с ним небольшому обновлению подвергся детектор STAR, работающий с самого первого запуска коллайдера в 2000 году. В этом году физики планируют столкновения ядер золота при энергиях до 200 гигаэлектронвольт, приходящихся на одну нуклонную пару в системе центра масс, однако ради отладки sPHENIX они будут проходит при заниженной светимости. RHIC — это ионный коллайдер, то есть на нем сталкиваются ядра различных атомов. Главная цель таких исследований — изучить свойства кварк-глюонной плазмы, рождающейся при таких столкновениях. Из этого состояния вещества, как принято считать, состояла Вселенная в первые мгновения после своего рождения. Мы уже рассказывали, как физики из PHENIX наблюдали кварк-глюонные капли сложной формы и увидели подавление рождения ипсилон-мезонов в кварк-глюонной плазме.