Исследователи из Цюрихского университета оптимизировали расчеты поведения груза, закрепленного на тросе под беспилотником, а также продемонстрировали эффективность своего подхода экспериментально. Доклад будет представлен на конференции RSS 2017, демонстрационное видео опубликовано на YouTube.
Для перевозки грузов мультикоптерами используются самые разные конструкции, однако у многих методов есть ограничение на форму или размеры транспортируемого объекта. Эту проблему решает крепление груза с помощью троса, однако у такого подхода также есть свои минусы, главный из которых — отсутствие жесткого крепления. В результате при резких маневрах груз может сильно отклоняться от траектории дрона, что, в свою очередь, может привести к крушению беспилотника.
Существующие методы моделирования поведения груза на тросе требуют существенных вычислительных мощностей, поэтому, по словам авторов, они решили упростить задачу, и оптимизировали алгоритм, который позволяет планировать траекторию движения мультикоптера с грузом на тросе с учетом огибаемых препятствий на пути. Для упрощения модели поведения троса исследователи представили его в качестве двух шарниров и призматического соединения — это позволило упростить модель троса при планировании траектории и при этом сохранилась приемлемая точность предсказания поведения груза.
Для демонстрации работоспособности своего метода исследователи протестировали систему на квадрокоптере весом менее килограмма, который на 82-сантиметровой веревке перевозил 84-граммовый груз, огибая препятствия.
Ранее некоторые из авторов доклада уже работали над оптимизацией движения мультикоптеров. Так, в прошлом году исследователи научили квадрокоптер выполнять агрессивные маневры, полагаясь лишь на показания собственной камеры, гироскопа и акселерометра. Кроме того, исследователи из Цюрихского университета этой весной продемонстрировали метод транспортировки груза на тросах с помощью нескольких мультикоптеров, которые при этом не используют дополнительных систем позиционирования.
Он отбил более ста мячей подряд
Американские инженеры разработали систему управления HITTER, которая позволяет свободно двигающемуся человекоподобному роботу играть в настольный теннис. Система состоит из двух элементов: высокоуровневого планировщика, предсказывающего траекторию мяча, и низкоуровневого нейросетевого контроллера, который управляет движениями робота. Такой подход позволяет роботу реагировать на мяч, летящий со скоростью более пяти метров в секунду, и при этом двигаться вдоль стола, удерживая равновесие. В тестах человекоподобный робот Unitree G1 под управлением HITTER показал уровень игры сравнимый с любительским. Робот смог провести несколько игр против людей и другого такого же робота. В одной из игр он успешно выполнил 106 последовательных ударов. Препринт статьи доступен на сайте arXiv.org.