Инженеры из США и Китая представили робота, который самостоятельно учится физическим действиям людей по видеороликам и способен занимать место одного из людей в некоторых сценариях социального взаимодействия. Доклад о проделанной работе будет представлен на конференции ICRA 2017 в Сингапуре.
Взаимодействия человека и робота это один из актуальных вопросов в современной робототехнике. Для того, чтобы сделать роботов более удобными и комфортными для людей, используются разные приемы, как декоративные (добавление дисплея с глазами), так и функциональные. В данном случае разработчики решили научить робота взаимодействовать с человеком в разных сценариях на физическом уровне, а в качестве обучения использовали демонстрацию взаимодействия людей.
Для обучения использовался робот Baxter производства Rethink Robotics, алгоритм которого обучали на примере RGB-D видеороликов (дополнительно с видеорядом использовались данные о глубине сцены), которые демонстрировали разные сценарии взаимодействия людей. В частности, на роликах люди приветствовали друг друга (пожимали руки, махали рукой или давали пять), помогали друг другу встать и передавали предмет. По видеозаписям робот оценил движения людей в разных сценариях.
Затем авторы заменили одного из людей в подобных ситуациях на самого робота, дополнительно оснащенного датчиком глубины Kinect, благодаря которому Baxter мог оценивать движения человека и делать соответствующий вывод о том, как именно нужно ответить. При этом установленные в манипуляторах датчики давления позволяли роботу действовать аккуратно при физическом контакте, поэтому Baxter мог аккуратно передать чашку или дать пять.
Движения Baxter сначала проверили на симуляторе, а затем пригласили 12 добровольцев для взаимодействия с роботом напрямую. Испытуемые оценили действия робота как более успешные, а движения как более естественные по сравнению с действиями робота, запрограммированного на движения вручную.
Ранее похожую работу представили ученые из Висконсинского университета в Мадисоне. Исследователи научили роботизированный манипулятор передавать чистую посуду человеку — робот на примере людей научился угадывать по поведению партнера подходящую стратегию подачи посуды с точностью до 90 процентов.
Робот Baxter обладает классической для многоцелевого промышленного робота компоновкой из двух манипуляторов и предусмотрен набор датчиков для отслеживания изменений в окружающей среде. Робот управляется операционной системой для роботов (ROS) с открытым исходным кодом, благодаря чему для исследовательских проектов с машинным обучением часто выбирают именно Baxter. Например, ранее его уже научили держать пистолет, распознавать предметы на ощупь и гладить одежду. Также он использовался для демонстрации работы мозгового интерфейса, который позволяет управлять роботом, предотвращая совершаемые им ошибки в реальном времени.
Он показал лучшее время на трассе, обойдя соперников на полсекунды
Инженеры разработали автопилот для гоночного дрона, управляющий беспилотником на уровне лучших людей-пилотов. Алгоритм под названием Swift, полученный с помощью метода обучения с подкреплением, способен управлять гоночным квадрокоптером, полагаясь только на данные бортовых сенсоров. В реальных полетах на тестовой трассе для дрон-рейсинга Swift смог превзойти трех профессиональных пилотов-чемпионов, выиграв у них 15 гонок из 25 и пройдя трассу с минимальным временем, которое на полсекунды меньше лучшего результата пилота-человека. Статья опубликована в журнале Nature. При поддержке Angie — первого российского веб-сервера Дрон-рейсинг — вид спорта, в котором мультикоптеры на высокой скорости проходят трассу, состоящую из последовательности ворот, через которые нужно пролететь за минимально возможное время. При этом управление происходит от первого лица, с помощью камеры и видеоочков. Современные дроны обладают очень высокой маневренностью и подвижностью: они могут резко менять направление движения, ускоряться, замедляться и совершать перевороты, а во время гонки они разгоняются до скоростей свыше 100 километров в час и подвержены перегрузкам, превышающим их собственный вес в пять раз. Это делает их пилотирование непростой задачей и требует хорошей подготовки и высокой скорости реакции оператора. Инженеры давно работают над созданием автопилота, который мог бы управлять дроном на уровне профессиональных пилотов. Помимо участия в дрон-рейсинге такая способность может пригодиться и в обычной жизни — мультикоптеры обладают невысокой энергоэффективностью, поэтому способность быстро летать и успешно маневрировать в окружении большого числа препятствий напрямую связана с успешностью выполнения задач. Инженеры под руководством Давида Скарамузза (Davide Scaramuzza) из Цюрихского университета уже имеют опыт разработки эффективных алгоритмов управления для дронов. К примеру, ранее они создали автопилот, способный управлять квадрокоптером на скорости от 3 до 7 метров в секунду в лесу между деревьев, полагаясь только на данные с бортовых сенсоров. В своей новой работе инженеры представили алгоритм под названием Swift. Он способен эффективно управлять гоночным квадрокоптером на уровне профессионального пилота дрон-рейсинга. Swift состоит из двух основных модулей: системы восприятия, которая переводит изображение от бортовой камеры дрона и данные от инерционного измерительного блока IMU в низкоразмерное представление, а также системы управления, которая принимает на вход низкоразмерное представление, созданное системой восприятия, и генерирует управляющие команды для электромоторов дрона. В модуль системы восприятия также входит алгоритм, вычисляющий текущее положение дрона в пространстве на основе данных камеры и инерционно-измерительного блока. Эта информация через фильтр Калмана объединяется с данными об относительном положении гоночных ворот, обнаруженных предварительно обученным нейросетевым детектором объектов в видеопотоке, после чего передается на вход системы управления, которая состоит из двух скрытых слоев, по 128 нейронов в каждом. Система управления тренировалась в симуляции с использованием модельно-свободного глубокого обучения с подкреплением. Этот метод обучения использует метод проб и ошибок, чтобы максимизировать величину параметра вознаграждения. В данном случае вознаграждение было максимальным в случае, если дрон следовал в сторону центра ближайших ворот таким образом, чтобы следующие ворота оставались в поле зрения камеры. Чтобы учесть различия между симуляцией и реальной динамикой полета, в процессе обучения информацию симулятора дополнили данными из реального мира, записанными с помощью системы захвата движений. Оценку автопилота провели на трассе для дрон-рейсинга, состоящей из семи ворот, установленных на квадратной площадке с длиной стороны 30 метров. Длина маршрута через все ворота составляла 75 метров. Алгоритм соревновался с тремя профессиональными пилотами Алексом Вановером (Alex Vanover), Томасом Битматтой (Thomas Bitmatta) и Марвином Шэппером (Marvin Schaepper). Все участники использовали гоночные дроны с одинаковыми характеристиками. Перед испытательными соревнованиями у пилотов была неделя для знакомства с трассой. В соревнованиях каждый из пилотов стартовал одновременно с дроном под управлением автопилота. Победителем становился тот, кто быстрее пролетит через все ворота на трассе в правильном порядке три раза. По результатам Swift смог выиграть у своих соперников в совокупности 15 гонок из 25, а также установил рекорд трассы, пролетев ее быстрее на полсекунды, чем остальные участники. https://www.youtube.com/watch?v=fBiataDpGIo&t=1s Инженеры разрабатывают гоночные автопилоты и для автомобилей. Например, инженеры из подразделения искусственного интеллекта компании Sony создали алгоритм автопилота GT Sophy, который с помощью обучения с подкреплением научился проходить за минимальное время трассы в гоночном автосимуляторе Gran Turismo Sport. В настоящих киберспортивных соревнованиях GT Sophy не только показала лучшее время в одиночных заездах, но и смогла победить команду лучших игроков в совместных гонках, набрав больше всего очков.