Американские ученые усовершенствовали методику микроскопии, основанную на физическом увеличении размеров образцов мозга. В нынешнем виде она позволяет визуализировать структуры, формирующие синапс, с помощью обычного светового микроскопа. Описание метода приводится в журнале Nature Methods.
Визуализация с помощью световой микроскопии ограничена дифракционным пределом до максимального разрешения приблизительно в 300 нанометров. Чтобы преодолеть это ограничение, сотрудники Массачусетского технологического института и Гарвардского университета недавно разработали методику микроскопии растяжения (expansion microscopy, ExM). Она состоит в том, что образец ткани мозга обрабатывают набором антител и флуоресцентных белков, помечающих интересующие ученых структуры, после чего этот образец пропитывают гелем из полиакриламида, фиксирующего положение меченых биомолекул, и механически гомогенизируют.
При погружении в воду гель равномерно увеличивается примерно в 4,5 раза от первоначального объема, зафиксированные в нем структуры также увеличиваются пропорционально. Это повышает разрешение световой микроскопии примерно до 60–70 (~300/4,5) нанометров. Тем не менее, для визуализации формирующих синапсы структур (например, шипиков дендритов — мест контакта с аксонами других нейронов) этого недостаточно.
Чтобы дополнительно повысить разрешающую способность метода, тот же научный коллектив предложил проводить подготовку образца в две стадии. Первая стадия выполняется так же, как оригинальная ExM с использованием полимеризующего гель состава, который впоследствии можно удалить. Вторая стадия проводится аналогично первой, только в ней в качестве исходного образца используется уже растянутый гель с мечеными молекулами, который перед повторным растяжением вымывают.
Полученный образец хорошо подходит для объемного сканирования световым микроскопом в силу своей прозрачности — он примерно на 99,99 процента состоит из воды и полимера.
Такая методика, получившая название микроскопии итеративного растяжения (iterative expansion microscopy, iExM), позволяет увеличить образец еще примерно в 4,5 раза, что соответствует приблизительно 20-кратному растяжению от первоначального объема. Благодаря этому разрешающая способность световой микроскопии позволяет рассматривать структуры с изначальным размером около 25 нанометров.
В эксперименте метод iExM позволил визуализировать и провести трехмерную реконструкцию устройства синапсов и ветвления дендритов нейронов различных структур мышиного мозга (в частности, гиппокампа и бледного шара) и проследить за отдельными нейронными цепями в них, для чего у обычной световой микроскопии и ExM недостаточно разрешения.
Методики изучения нервной ткани постоянно совершенствуются. Так, например, нейробиологи научились искусственно создавать нейронные ансамбли, печатать аналоги мозговой ткани на 3D-принтере, восстанавливать утраченные нейрональные связи светом и сохранять их при заморозке образцов, а также наблюдать за эпигенетической регуляцией работы мозга в реальном времени.
Трехмерное моделирование коннектома во фрагменте крысиного гиппокампа позволило пересмотреть классификацию синапсов и дать новую оценку информационной емкости мозга — по мнению ученых, она превышает петабайт, что примерно соответствует объему всей информации в интернете.
Также современные методики визуализации и работы с данными позволили исследователям построить полную модель коннектома дрозофилы и создать атлас человеческого мозга с микронным разрешением.
Олег Лищук
Он может поднимать груз до 25 килограмм
Американская компания Apptronik представила раннюю версию прототипа гуманоидного робота общего назначения Apollo. Его рост составляет 173 сантиметра, масса — 73 килограмма. Заряда батареи хватает на четыре часа работы. В текущей версии Apollo может поднимать до 25 килограмм и предназначен для работы на складах, однако в будущем список возможностей и сфер применения будет расширяться, сообщает New Atlas. При поддержке Angie — первого российского веб-сервера В последнее время сразу несколько компаний анонсировали разработку собственных человекоподобных роботов общего назначения. Среди них, например, производитель экзоскелетов Fourier Intelligence и робототехническая компания Unitree, известная прежде всего своими четвероногими роботами. К разработке собственного человекоподобного робота приступила даже Tesla, которая недавно представила обновленную версию робота Optimus. Такой всплеск интереса к роботам, конструктивно повторяющим анатомию человека, в первую очередь связан с их ключевой способностью функционировать в той же среде, где работает и живет человек. Они могут передвигаться по тем же помещениям, взаимодействовать с теми же инструментами и предметами без необходимости специально что-либо менять и перестраивать. В перспективе человекоподобные роботы смогут заменить собой людей на тяжелых и опасных для здоровья работах. Недавно список компаний-разработчиков пополнила американская компания Apptronik из штата Техас. Основанная в 2016 году сотрудниками лаборатории Human Centered Robotics Lab Техасского университета в Остине, Apptronik за время своего существования уже успела поработать над десятком проектов. Среди них, например, человекоподобный робот Valkyrie, созданный по заказу NASA, а также телеоперационный робот Astra. Прототип человекоподобного робота, разработку которого недавно анонсировала компания, получил название Apollo. Его высота составляет 173 сантиметра. При собственной массе 73 килограмм Apollo может поднимать грузы до 25 килограмм, что, для сравнения, больше грузоподъемности робота Optimus на 25 процентов. Одного заряда батареи хватает на четыре часа работы Apollo. При этом батарею можно быстро заменить на новую без длительного перерыва на зарядку. Также при необходимости Apollo может работать от электросети. https://www.youtube.com/watch?v=uJOA5IDaL5g Робот имеет модульную конструкцию — его верхняя часть может быть установлена на колесную платформу или на неподвижную опору, если нет необходимости в передвижениях робота. Для коммуникации с человеком на лицевой части головы Apollo есть светодиодная подсветка вокруг глаз-видеокамер и индикатор на основе технологии электронных чернил, на котором кроме рта, изображающего эмоции, может отображаться текстовая и графическая информация. Для этой же цели на груди робота расположен большой информационный OLED-дисплей. В ближайшей перспективе основным предназначением Apollo станет работа на складах и в производственных помещениях, где он будет переносить и сортировать грузы. Однако в дальнейшем с развитием аппаратного и программного обеспечения платформы Apollo, которую в Apptronik планируют сделать доступной для сторонних разработчиков, будут расти и возможности робота. В компании считают, что в будущем робот найдет применение и в других сферах, например, в строительстве, нефтегазовой отрасли, производстве электроники, торговле, курьерской доставке, уходе за пожилыми людьми и пациентами, которым требуется реабилитация. На данный момент представлена ранняя альфа-версия. Серийный Apollo компания планирует выпустить в 2024 году, а старт продаж можно ожидать не ранее 2025 года. Основное предназначение робота Digit от компании Agility Robotics также связано с переноской грузов на складах. Его отличительной особенность стала конструкция ног, колени которых выгнуты в обратную сторону. Недавно компания представила обновленную версию Digit, у которой появилась голова и манипуляторы на руках.