Программа Libratus, разработанная в Университете Карнеги — Меллона, победила в 20-дневном покерном турнире «Brains Vs. Artificial Intelligence: Upping the Ante». Компьютер выиграл фишек на сумму более 1,7 миллиона долларов, сообщает New Scientist.
В последнее время наработки в области машинного обучения позволили компьютерам значительно продвинуться вперед и обыграть людей в играх, в которых это традиционно считалось невозможным. Однако, вплоть до недавнего времени люди по-прежнему побеждали в играх с неполной информацией. В 2015 году программа Claudico (предшественник Libratus) играла с четырьмя профессиональными игроками и заняла предпоследнее место. На протяжении двух недель было сыграно 80000 раздач, и из четырех живых игроков только один набрал меньше фишек, чем компьютер.
В турнире, который проходил в питтсбургском казино Rivers было сыграно 120 тысяч раздач в безлимитный техасский холдем один на один (Хедз-Ап), против Libratus играли Даниэль МакОлэй, Джимми Чу, Донг Ким и Джейсон Лес. В результате 20-дневного турнира программа победила людей, заработав более 1,7 миллиона долларов в фишках. Несмотря на это, разработчики не получат никаких денег, а призовой фонд в 200 тысяч долларов будет поделен между четырьмя живыми игроками в зависимости от занятого места.
На данный момент точно не известно, как именно работает Libratus, авторы описали лишь общую структуру программы и планируют в ближайшем будущем опубликовать статью в рецензируемом журнале. По словам разработчиков, Libratus состоит из трех частей. Основное «ядро» Libratus было подготовлено заранее, вычисления заняли 15 миллионов ядро-часов, в то время как на Claudico ушло два-три миллиона. Вторая часть программы следила за возможными ошибками, которые могли допустить соперники, и учитывала в процессе игры эту информацию. Третья часть Libratus отслеживала собственные слабые стороны, которые могли использовать противники, и корректировала общую стратегию с учетом этих данных. Такой подход позволил программе как блефовать самостоятельно, так и распознавать дезинформацию со стороны соперников.
По мнению авторов программы у систем, подобных Libratus, большое будущее в самых разных сферах, где приходится иметь дело с неполной информацией. В качестве возможных сфер применения программы исследователи называют информационную безопасность, военное дело, аукционы, переговоры и даже бережливое распределение медикаментов.
А также измерит расстояние до них
Американские ученые разработали технологию пассивного теплового зрения HADAR, которая по инфракрасному изображению получает информацию о температуре, материалах и текстуре поверхности объектов, их излучательной способности, а также умеет измерять расстояние. Технология позволяет в ночных условиях получать изображение, сопоставимое по качеству со стереоскопическими изображениями, получаемыми обычными RGB камерами при дневном освещении. Статья опубликована в журнале Nature. Для автономной навигации и взаимодействия с людьми роботам и беспилотникам нужна информация об окружении, которую они получают с помощью камер, лидаров, сонаров или радаров. Однако обычные камеры зависят от условий освещенности и плохо работают в ночное время и при плохой погоде. Кроме этого информация, получаемая с камер не содержит физического контекста, что может приводить к некорректной работе нейросетевых алгоритмов автопилота, который, к примеру, не может отличить настоящего человека от манекена. Активные сенсоры, такие как лидары и радары, при резком росте их числа начинают взаимно влиять друг на друга. Выходом могло бы стать использование в условиях недостаточной видимости камер, работающих в инфракрасном диапазоне. Однако из-за так называемого «эффекта призрачности» получаемые тепловизором изображения обычно выглядят как пятна без четкой текстуры. Это связано с тем, что поверх отражающихся от объекта инфракрасных лучей, которые несут информацию об особенностях его рельефа, накладывается его собственное тепловое излучение, которое засвечивает эту полезную информацию. Группа ученых под руководством Зубин Джакоб (Zubin Jacob) из Университета Пердью смогла справиться с этой проблемой. Они разработали технологию под названием HADAR (акроним от слов heat-assisted detection and ranging), которая с помощью машинного обучения извлекает из изображений, полученных в инфракрасном диапазоне, информацию о температуре объектов, излучательной способности материалов, из которых они состоят, а также их физической текстуре. Кроме того, технология позволяет определять расстояние до объектов на изображении. Выделение информации о собственном излучении объектов позволяет избавиться от «эффекта призрачности» и получить информацию о текстуре. Для этого авторы используют данные из библиотеки материалов, которая содержит информацию об их излучательной способности. Инфракрасное изображение фиксируется с помощью гиперспектральной камеры, после чего данные поступают на вход нейросетевой модели, которая производит декомпозицию исходных данных, выделяя из них информацию о температуре, собственном излучении и текстуре. Для обучения алгоритма исследователи использовали как настоящие изображения, полученные с помощью камеры, так и множество сгенерированных трехмерных сцен. Возможности технологии демонстрирует одна из сцен, на которой при слабом освещении запечатлен автомобиль черного цвета и человек, рядом с которым установлен вырезанный из картона портрет Альберта Эйнштейна в натуральную величину. Изображения, полученные с помощью обычной камеры, лидара и HADAR затем использовали для определения объектов с помощью алгоритма распознавания изображений. На изображении, полученном с помощью обычной камеры, алгоритм ошибочно распознал двух людей, приняв картонную фигуру за человека. На данных, полученных лидаром, оказалось невозможно определить автомобиль. При этом HADAR смог выделить все составляющие сцены, а также определить, что одна из человеческих фигур имеет сигнатуру краски на поверхности, а вторая покрыта тканью. Созданная технология может значительно улучшить системы автономной навигации беспилотных транспортных средств и роботов, дополнив уже существующие системы или даже заменив их. HADAR позволяет определять объекты и измерять расстояние по данным, полученным в ночное время, так же хорошо, как это делают традиционные системы компьютерного зрения, которые используют данные с камер в условиях дневного освещения. По словам авторов работы, в дальнейшем им предстоит решить проблему высокой стоимости оборудования для гиперспектральной съемки и невысокой производительности алгоритма. Сейчас процесс получения изображений и их обработки занимает минуты, но для работы в режиме реального времени это время необходимо сократить. Ранее мы рассказывали, как физики создали лидар, способный распознать метровые детали с рекордного расстояния в 45 километров в условиях высокого шума и слабого сигнала.