Химики из Оксфордского университета синтезировали вещество с рекордным размером ароматического молекулярного кольца. Олигомер порфирина содержит в своей системе 78 сопряженных электронов, в полтора раза больше, чем у предыдущего рекордсмена. По словам авторов, такие системы позволяют выяснить, чем токи в молекулах отличаются от токов в наноразмерных металлических и полупроводниковых кольцах. Исследование опубликовано в журнале Nature.
Ароматичность — важное свойство органических соединений, связанное с устройством их электронной структуры. Помимо высокой химической стабильности, в ароматических соединениях существуют кольцевые токи, частично экранирующие центральную часть молекулы от магнитных полей. Типичный представитель ароматических соединений — бензол, молекула из шести атомов углерода.
Для того чтобы быть ароматичным, соединение обязано быть циклическим (замкнутым), его атомы должны образовывать сопряженную систему, по которой могут свободно перемещаться электроны. Количество электронов в этой системе должно соответствовать формуле [4n + 2], за редким исключением в виде ароматичности Мебиуса. Также традиционно от молекулы требуют, чтобы она была плоской. Если число электронов кратно четырем, то систему называют антиароматичной — она не так стабильна, а в магнитных полях не экранирует, а наоборот усиливает действие поля на центральную часть молекулы.
В согласии с этим правилом, ароматичностью обладают системы из 10, 14, 18, 22 и так далее сопряженных атомов углерода. Однако на практике, с ростом размера кольца ароматичность становится менее выраженной и практически исчезает в системах с 30 и более электронами. «Продлить» область существования ароматических соединений удается в геометрически жестких структурах. Рекордсменом здесь выступал синтезированный в 2015 году додекафирин — циклическая молекула, состоящая из двенадцати пятиугольных пиррольных фрагментов, соединенных по мотиву порфирина (цикл из четырех пирролов, соединенных через мостики-атомы углерода, входит в состав гема, хлорофилла, феофитина). В его сопряженную систему водило 50 электронов.
В новой работе химики получили неплоскую молекулу, содержащую порфириновый мотив, но обладающую ароматическими свойствами — циклический гексамер порфирина. Его кольцо состоит из шести порфириновых колец, соседние пары которых соединены ацетиленовыми мостиками. В центре каждого порфиринового фрагмента находится атом цинка. Он сыграл роль крепления для молекулярной «распорки», встроенной в центральную полость кольца. С помощью «распорки» химикам удалось напрямую определить интенсивность и характер экранирования центральной области кольца от внешних магнитных полей.
Для этого использовался метод ядерного (протонного) магнитного резонанса. Каждый атом водорода в молекуле способен взаимодействовать с внешним магнитным полем. Его ядро (протон), подобно магниту, пытается направить свой спин параллельно полю — его направление начинает прецессировать (вращаться) вокруг направления линий магнитного поля. Существует еще одно допустимое состояние — когда спин направлен строго против линий магнитного поля. Разность энергии этих двух состояний примерно соответствует радиочастотному излучению. Поэтому если поместить вещество, содержащее атомы водорода в магнитное поле и облучать его изучением различной частоты, при определенном значение возникнет резонансное поглощение — ядра атомов водорода начнут активно поглощать кванты излучения и менять направление своих спинов.
Точное значение этой частоты определяется величиной магнитного поля, которую «чувствует» данный протон. Она отличается от приложенного внешнего магнитного поля из-за эффектов экранирования ароматических и антиароматических структур, а также из-за магнитных полей соседних атомов.
«Распорка» в исследуемом кольце играла роль зонда. Химики сравнивали магнитные поля, которые «чувствовали» атомы водорода «распорки». Как и ожидалось от ароматической структуры с 78 электронами, кольцо уменьшало магнитное поле в своем центре. Химики также испытали кольцо с 80 электронами — антиароматическое — «ощущаемое» магнитное поле в атомах «распорки» выросло.
Интересно, что ароматичность в предложенной структуре легко переключалась. Для этого ученые использовали электрохимическое окисление. Этот процесс отрывает определенное количество электронов от молекулы, в зависимости от подаваемого напряжения.
Аналогичные токи экранирования ученые наблюдали и в наноразмерных металлических и полупроводниковых кольцах. Они связаны с существованием фазовых когерентных состояний в материалах. Как и в ароматических и антиароматических соединениях направления токов зависят от количества электронов в системе — точнее, от остатка деления этого числа на четыре. Однако размеры металлических колец на порядки превышают размеры молекулярных колец (20-1000 нанометров против 1-2 нанометров). Исследование взаимосвязи между квантовой когерентностью в «больших» кольцах и ароматичностью в «маленьких» позволит лучше понять природу наблюдаемых эффектов.
Помимо ароматичности, возникающей в плоских кольцах, предсказано существование суперароматичности — состояния, возникающего в сферических конструкциях. Как и в ароматических соединениях, суперароматические каркасы будут сильно экранировать атомы, находящиеся внутри их, от магнитных полей. Для того, чтобы соединение было суперароматичным, в его сопряженной системе должно быть 2(N+1)2 электронов. Такие объекты до сих пор не были найдены. В качестве кандидата на суперароматичность назывался фуллерен C50.
Владимир Королёв
Определение субъективной ценности продукта питания происходит с участием орбитофронтальной коры, причем суждение о ценности выносится на основании оценки отдельных его свойств. Это подтвердила американо-японская команда ученых, которая также установила, что на субъективную ценность еды влияет содержание в ней макронутриентов и витаминов. Результаты опубликованы в журнале Nature Neuroscience.