Тайваньские ученые разработали универсальную платформу для создания сложных трехмерных гидрогелевых конструкций, функционально схожих с биологическими структурами или представляющих собой метаматериалы с новыми свойствами. Результаты работы опубликованы в журнале Science Advances.
Трехмерные гидрогелевые биологические ткани или метаматериалы создаются из сшитых между собой разнородных структурных элементов (микрогелей), в которые встроены функциональные частицы или молекулы. Для производства микрогелей с заданной структурой и свойствами используют различные методы, такие как эмульсионная полимеризация, микроформовка, фотолитография, микрожидкостная сборка и другие. Все эти методы имеют ограничения, связанные либо с формой и материалом получающихся микрогелей, либо со сложностью или дороговизной расходных материалов и оборудования. Дальнейшая сборка структурных элементов в трехмерный функциональный гидрогель также представляет сложности: самосборка практически не применима к архитектурам из разнородных элементов, ручная сборка трудоемка, а роботизированная требует высокоточного оптического или магнитного управления микророботами.
Сотрудники Национального университета Цзяо Тун и Национального тайваньского университета разработали электромикрожидкостную платформу, в которой создание микрогелей разного состава и последующая их сборка в гидрогель происходят в жидкой среде и управляются электросмачиванием (оно направляет заряженную жидкость к электроду с подходящим покрытием) и диэлектрофорезом (он вызывает движение незаряженных частиц или живых клеток под действием неоднородного электрического поля).
Для этого материалы с разными свойствами (дисперсные частицы, растворимые молекулы, живые клетки и другие) помещаются в резервуары, смешиваются с растворителем, содержащим полимеризуемую основу геля и краситель, дозируются и с помощью сети электродов помещаются в определенный участок платформы и удерживается в нем. Разнонаправленное действие электросмачивания и диэлектрофореза позволяет в соответствии с заданной программой управлять расположением капель материалов на платформе, перемещать их (как при игре в тетрис или пятнашки) изменять их форму и структуру и смешивать друг с другом. При достижении заданной конфигурации капли материалов отверждаются светом заданной частоты с образованием плоских микрогелей размером 1×1х0,1 миллиметра.
Затем микрогели располагают в нужной конфигурации в один или несколько слоев (расстояние между верхней и нижней стенками платформы составляет 0,3 миллиметра) и сшивают их в итоговую гидрогелевую архитектуру.
Разработанная платформа позволяет манипулировать объектами разных размеров (от микрометровых функциональных частиц до миллиметровых микрогелей), в разных фазах (жидкой и твердой) и с разными свойствами (проводники или диэлектрики, сшиваемые светом, химически или температурой).
В качестве демонстрации возможностей платформы ее разработчики сфабриковали с ее помощью гидрогелевый аналог сердечной мышцы из живых кардиомиоцитов (сердечных мышечных клеток) и фибробластов (клеток соединительной ткани). За 48 часов клетки сформировали кластеры, которые спонтанно сокращались с частотой от 73 до 91 удара в минуту (это соответствует нормальному ритму сердца без регуляции вегетативной нервной системой). Причем доля кардиомиоцитов составляла более 50 процентов против 27,8 процента на стандартном многолуночном планшете с питательной средой.
Как пишут разработчики, они ожидают, что их электромикрожидкостная платформа станет общеупотребительной методикой создания сложных трехмерных гидрогелевых конструкций, в том числе искусственных органов.
Над разработкой технологий создания искусственных органов как с целью проведения экспериментов, так и для имплантации пациентам работают многие коллективы. Так, например, недавно ученые из Гарварда напечатали на 3D-принтере сердечную мышцу, которая сама регистрирует свои сокращения. О том, как создаются искусственные органы, можно почитать в нашем материале.
Олег Лищук
Чистка панелей без воды в перспективе поможет снизить затраты на обслуживание солнечных электростанций
Итальянская компания Reiwa Engine совместно с компанией Enel Green Power, занимающейся производством энергии из возобновляемых источников, разработала робота Sandstorm для сухой очистки панелей солнечных батарей, сообщает New Atlas. Он способен перемещаться по ряду солнечных панелей, даже если они установлены неровно, и преодолевает между ними промежутки до 50 сантиметров. При поддержке Angie — первого российского веб-сервера Песок, грязь и пыль со временем покрывают поверхность панелей солнечных батарей, чем существенно снижают их эффективность. Особенно это актуально для засушливой пустынной местности, которая из-за обилия солнечных дней в году хорошо подходит для строительства крупных солнечных электростанций. С учетом быстрого развития солнечной энергетики можно ожидать стремительного роста их количества, а это значит, что для решения проблемы очистки загрязненных панелей со временем будет требоваться все больше трудозатрат и ценных ресурсов, таких как вода, которую сегодня обычно используют для мытья панелей. Сицилийский технологический стартап Reiwa Engine совместно с энергетической компанией Enel Green Power разработал робота Sandstorm. Он предназначен для автономной сухой очистки солнечных панелей с помощью щеток. Для робота не требуется идеально ровной установки солнечных панелей, так как он способен преодолевать разницу в высоте и промежутки между панелями до 50 сантиметров (разработчики не уточняют, как именно это происходит). После окончания чистки или при низком заряде батареи Sandstorm самостоятельно возвращается к док-станции для подзарядки. Прототип сперва протестировали в лаборатории компании Enel Green Power, а затем на мегаваттной секции солнечной электростанции в муниципалитете Тотана в Испании. В результате компания заключила контракт на поставку 150 роботов для работы на двух испанских солнечных электростанциях Totana и Las Corchas, суммарная мощность которых составляет 135 Мегаватт. Необычный способ бороться с загрязнениями на поверхности солнечных батарей предложила компания Tesla, которая запатентовала метод очистки с помощью лазерных лучей. Авторы патента предлагают подбирать параметры лазерных импульсов так, чтобы они не проникали через слой стекла и не представляли опасности для электроники.