Целью запуска гиперзвуковой ракеты HIFiRE проведенного Исследовательской группой по оборонным науке и технологиям министерства обороны Австралии совместно с Исследовательской лабораторией ВВС США была проверка гиперзвукового прямоточного воздушно-реактивного двигателя и эллиптического носового обтекателя. Как пишет Aviation Week, полученные в ходе запуска данные позволят получить более полное представление об устойчивых полетах на гиперзвуковой скорости.
Во время испытательного запуска, произведенного 18 мая 2016 года, вторая ступень ракеты с гиперзвуковым двигателем поднялась на высоту 278 километров, а затем начала снижение. Эллиптичность установленного на вторую ступень обтекателя составила 2:1 при его длине 0,9 метра. В нем было установлено оборудование, при помощи которого производились замер стабильности полета на гиперзвуковой скорости и собирались данные о переходе турбулентного потока в ламинарный на передних аэродинамических кромках.
Во время полета ракета развила скорость в 7,5 числа Маха, что соответствует примерно 9,3 тысячи километров в час. Какие именно данные получили исследователи, не уточняется. Известно, что они будут использоваться для создания алгоритмов точного прогнозирования переходов потоков, точках интенсивного нагрева, переносе тепла и влиянии приповерхностного трения на стабильный полет. Существующие алгоритмы позволяют вести расчеты для гиперзвуковых полетов тел с простыми формами, включая конус и сферу.
Следующее испытание по программе HIFiRE планируется провести в начале 2017 года. В нем уже при помощи ракеты будут запускаться два гиперзвуковых планера, сделанных из алюминия с медными носовыми частями и передними кромками аэродинамических поверхностей. В полете на гиперзвуковой скорости планеры должны будут одновременно отделиться от ракеты. При этом должен будет уйти вверх от плоскости полета ракеты под углом в 25 градусов, а другой —резко перейти в горизонтальный полет.
Кроме того, в 2017 году планируется провести запуск ракеты с адаптивной системой управления полетом. Работа системы будет проверяться при скорости в семь чисел Маха и при динамическом давлении до 48 килопаскалей при маневрировании, включая разворот с устоявшимся ускорением и резкую смену курса. Адаптивная система управления полетом должна будет контролировать летные параметры ракеты и обеспечивать стабильность и управляемость. Продолжительность этого полета составит 540 секунд.
В конце 2017 года исследователи намерены проверить новые гиперзвуковые прямоточные воздушно-реактивные двигатели с прямоугольно-эллиптическим внутренним переходом. Эти двигатели будут проверяться во время гиперзвукового полета к земной поверхности с высоты 300 километров. Первая версия таких двигателей проверялась в 2015 году. Тогда запуск был произведен в Норвегии. Это испытание оказалось неудачным, поскольку разработчики большую часть полета не получали телеметрические данные.
Программа HIFiRE стартовала в 2012 году. Основной ее целью являются исследование и разработка технологий устоявшегося продолжительного гиперзвукового полета. В ходе программы планируется провести испытания гиперзвукового планера, ракеты с гиперзвуковым прямоточным воздушно-реактивным двигателем на скорости в восемь чисел Маха и гиперзвукового летательного аппарата. Аппарат будет испытываться на скорости устоявшегося гиперзвукового полета на скорости в восемь чисел маха.
Гиперзвуковой прямоточный воздушно-реактивный двигатель представляет собой относительно простую конструкцию и состоит из воздухозаборника, камеры сгорания и сопла. Во время полета на гиперзвуковой скорости воздух попадает в воздухозаборник где сжимается и практически без торможения попадает в камеру сгорания, где смешивается с топливом. После этого продукты сгорания образуют реактивную струю. Двигатель начинает работать при скорости в четыре числа Маха, а его теоретический предел составляет 24 числа Маха.
Военный университет Министерства обороны запатентовал дрон для защиты объектов от воздушного нападения роев беспилотников. Как следует из документа на сайте Роспатента, аппарат дает одновременный залп из стволов стрельбового модуля и создает осколочное поле сплошного поражения.