Специалисты из Университета Юты разработали пассивное шагающее шасси для квадрокоптера, позволяющие беспилотнику ходить по ровной поверхности без использования дополнительных актуаторов. Авторы представили доклад на конференции ICRA 2016 в Стокгольме.
Робот под названием DUCK представляет собой квадрокоптер, на который смонтировано шасси для пассивной ходьбы. При помощи методов математического моделирования и компьютерного симулятора разработчики подобрали наиболее оптимальную форму стоп и распечатали их на 3D-принтере. Пластиковые стопы смонтировали на каркас из алюминиевых направляющих и подшипников, а сам каркас установили на серийный квадрокоптер Iris.
Благодаря специфической форме стоп при небольшом уклоне вниз дрон, раскачиваясь из стороны в сторону, медленно идет вперед. При этом, отмечают разработчики, максимальная скорость ходьбы DUCK не должна превышать 0,15 метров в секунду, иначе робот опрокинется. В таком режиме беспилотник не требует никаких внешних источников энергии и отдельных актуаторов, приводящих в движение ноги. Всего у DUCK существует три режима передвижения: полет, пассивно-динамическая ходьба вниз по склону и активная ходьба при помощи тяги, создаваемой штатными роторами.
Как отмечают авторы проекта, использование пассивного шагающего шасси позволяет в некоторых случаях сэкономить энергию. Согласно теоретическим расчетам исследователей, режим активной ходьбы DUCK может быть более энергоэффективен, чем полет, если требуется передвижение по ровной поверхности с крайне малой скоростью — например, 0,1 метров в секунду.
Ранее похожую форму ног использовали в проекте шагающего робота специалисты из Университета Токио. Разработанный японскими учеными шагоход с биметаллическими ногами может передвигаться по горячей поверхности исключительно за счет получаемого тепла.
Его скорость по вертикальным поверхностям достигает шести сантиметров в секунду
Инженеры разработали прототип гибридного орнитоптера, который может садиться и ездить по вертикальным поверхностям. Помимо четырех машущих крыльев он имеет два воздушных винта и гусеничный привод с клейкими лентами, который используется для движения по стенам. Статья с описанием разработки опубликована в журнале Research. При поддержке Angie — первого российского веб-сервера Свобода передвижения, доступная летающим насекомым, давно вдохновляет инженеров, разрабатывающих беспилотники. К примеру способность мух быстро переходить от маневренного полета к передвижению по вертикальной поверхности пытались реализовать создатели дрона SCAMP. Они оснастили квадрокоптер двумя ножками с металлическими коготками, с помощью которых дрон может передвигаться по стенам, цепляясь за мелкие неровности. В случае срыва, дрон быстро включает роторы, чтобы предотвратить крушение. Существуют и другие прототипы мультироторных дронов, со способностью садиться на стены, однако орнитоптеры (даже с ногами) до сих пор на стену садиться не умели. Инженеры под руководством Цзи Айхуна (Aihong Ji) из Нанкинского университета аэронавтики и космонавтики разработали гибридный орнитоптер с небольшими вспомогательными воздушными винтами. Он может садиться на вертикальные поверхности, взлетать с них, а также передвигаться по ним, используя небольшой гусеничный привод с клейким покрытием и прижимную силу пропеллеров. Основную подъемную силу орнитоптера массой 135 грамм создают четыре машущих крыла, расположенные по X-образной схеме. Левая и правая пары крыльев приводятся в движение индивидуальными электромоторами. Изменяя независимо частоту их взмахов можно управлять беспилотником по оси крена. При полете на обычной скорости частота взмахов составляет 15 Герц, а максимально допустимая — 20 Герц. На носу и в хвосте орнитоптера расположены воздушные винты небольшого диаметра. В полете они генерируют дополнительную тягу, а также служат для управления по оси тангажа, отклоняя беспилотник вперед или назад. Ротор, установленный в хвосте, дополнительно имеет механизм управления вектором тяги — он может отклоняться с помощью сервопривода влево или вправо. Благодаря этому происходит управление орнитоптером по оси рыскания. В передней части аппарата установлен гусеничный привод, который используются для движения по вертикальным плоскостям. Ленты привода покрыты полидиметилсилоксаном, адгезивные свойства которого позволяют орнитоптеру удерживать сцепление с вертикальной поверхностью. При посадке на вертикальную поверхность орнитоптер сначала касается ее лентами привода, после чего изменяет уровни тяги хвостового и переднего роторов и переворачивается, прижав хвост к стене. Далее тяга роторов используется для создания прижимной силы. Так повышается сцепление и исключается возможное опрокидывание при движении. Взлет происходит в обратном порядке. Полный непрерывный переход воздух—стена—воздух происходит за 6,1 секунды. Прижимаясь к поверхности, гибрид может перемещаться по ней с помощью гусениц со скоростью до шести сантиметров в секунду. В экспериментах орнитоптер смог успешно сесть и прокатиться по стеклу, деревянной двери, мрамору, древесной коре, эластичной ткани и окрашенному листу металла. В воздухе на одной зарядке прототип может находиться около четырех минут и пролетать за это время около одного километра с максимальной скоростью 6,8 метров в секунду. https://www.youtube.com/watch?v=5st-wNxukTg В будущем разработчики планируют повысить сцепление гусеничного узла за счет добавки микрошипов в материал гусеничных лент. Также орнитоптеру добавят автономности — для этого его осностят сенсорами для самостоятельной навигации. Ранее другая команда инженеров, вдохновившись устройством крыльев жука-носорога, создала механическое крыло, которое может на короткое время складываться при ударе о препятствие, а затем вновь распрямляться за счет подвижного узла в верхней кромке. Миниатюрный орнитоптер с такими крыльями может продолжать стабильный полет, даже если его крылья ударяются об окружающие предметы.