Американские исследователи разработали и испытали бионический протез кисти, который позволяет человеку чувствовать, к чему он прикасается. О процессе разработки, возможностях и перспективах устройства рассказал в IEEE Spectrum глава Лаборатории функциональных нервных интерфейсов в Университете Кейс-Уэстерн Дастин Тайлер (Dustin Tyler).
Для этого сотрудники лаборатории оборудовали обычный бионический протез сенсорной гаптической (предназначенной для передачи тактильной чувствительности и положения кисти) системой. Для этого в предплечья добровольцев имплантировали специально разработанные плоские электродные манжеты, охватывающие снаружи крупные нервы: локтевой, лучевой и срединный. В каждой их этих манжет находится восемь контактных точек, связанных с отдельными каналами стимуляции.
В различные части протеза поместили датчики, реагирующие на прикосновение. Их через компьютер соединили с имплантированными электродами так, чтобы информация от разных датчиков подавалась на нерв по разным каналам.
В результате многолетних экспериментов и настройки системы доброволец Игорь Спетик (Igor Spetic) смог выполнять с помощью протеза различные тонкие действия, например, оторвать хвостик от вишни, даже с завязанными глазами. При выключенной гаптической системе ему это удается в 43 процентах случаев, а при включенной число успешных попыток достигает 93 процентов. По словам самого Спетика, благодаря этой системе он ощущает протез не как инструмент, а как собственную руку.
Работы по разработке протеза, максимально напоминающего по функциональности человеческую кисть, ведутся в Кейс-Уэстерне и еще нескольких кливлендских научных центрах с 2012 года. Тем не менее, по словам Тайлера, разработка пока далека от совершенства.
В настоящее время его лаборатория создает имплантируемые манжеты нового поколения, содержащие в четыре раза больше электродов. Это необходимо для передачи широкого спектра ощущений: не только тактильных, но и температурных, болевых, проприоцептивных (чувство положения сустава). Но главное — систему необходимо сделать полностью имплантируемой, без необходимости проводного подключения к внешнему компьютеру.
По словам Тайлера, сделать это непросто, поскольку у системы 16 записывающих каналов и 96 каналов стимуляции, при этом она должна работать годами имплантированной в человеческую руку. Тем не менее, рабочий прототип автономной системы разработчики рассчитывают создать к 2019 году.
Олег Лищук
При этом не потребуется демонтаж и разборка
Инженеры GE Aerospace Research разработали мягкого робота Sensiworm для обследования технического состояния авиационных двигателей. Робот способен ползать подобно гусенице по вертикальным поверхностям и даже потолку, передавая оператору видеоизображение в реальном времени. С помощью Sensiworm технические специалисты смогут оценивать текущее состояние авиамоторов без необходимости их демонтажа с самолета, сообщает New Atlas. При поддержке Angie — первого российского веб-сервера Современные турбовентиляторные двигатели требуют регулярного обслуживания. Они состоят из огромного количества деталей, тщательно изучить состояние которых без снятия двигателя с самолета даже с помощью эндоскпов (бороскопов) порой невозможно. При этом демонтаж мотора и его последующая разборка занимают много времени, в течение которого самолет простаивает на земле. Поэтому инженеры давно работают над альтернативными способами обследования авиадвигателей изнутри без их демонтажа. Одна из таких разработок принадлежит инженерам исследовательского отдела компании General Electric GE Aerospace Research, которые совместно с сотрудниками Университета Бингемтона разработали мягкого робота Sensiworm (Soft ElectroNics Skin-Innervated Robotic Worm) для обследования технического состояния авиационных двигателей изнутри. Вытянутый корпус Sensiworm состоит из мягкого полимерного материала, который способен растягиваться и сокращаться с помощью источника давления. Способ передвижения Sensiworm напоминает движения гусеницы пяденицы. Робот может передвигаться не только по горизонтальным и вертикальным поверхностям, но также и по потолку. Для этого он использует две присоски, расположенные в передней и задней части корпуса. Таким образом Sensiworm может добраться до труднодоступных мест внутри двигателя, включая лопатки компрессоров и турбин. https://www.youtube.com/watch?v=_Mks06p0KVo Внутри автономной версии Sensiworm, помимо собственных источников питания, давления и бортового компьютера, находится камера с источником света, а также другие сенсоры, необходимые сервисным специалистам. Робот может автоматически обнаруживать и обходить препятствия (технических деталей того, как это происходит, разработчики пока не сообщают). По словам создателей Sensiworm, робот должен выполнять роль дополнительных глаз и ушей, исследуя внутренности авиадвигателей на предмет неисправностей, коррозии и повреждения теплоизоляционного покрытия. Разработчики считают, что в будущем он сможет не только передавать изображение интересующих участков в реальном времени, выполняя роль продвинутого варианта бороскопа, но и сможет производить мелкий ремонт. Внутренней инспекции требуют не только такие сложные устройства как авиадвигатели, но даже трубопроводы. Китайские инженеры разработали миниатюрного робота для инспекции внутреннего состояния трубопроводов диаметром меньше сантиметра. Робот состоит из цилиндрических модулей, приводимых в движение актуаторами на основе диэлектрических эластомеров.