Ученые из Делфтского технического университета смогли использовать единственную камеру оптического потока для определения высоты при посадке беспилотника. Статья с подробным описанием технологии опубликована в IOPscience.
Исследователи при экспериментах с квадрокоптером Parrot AR drone 2.0 обнаружили, что при посадке в автоматическом режиме беспилотник в какой-то момент начинает покачиваться. Причем амплитуда этих колебаний строго зависит от высоты. Изучив вопрос, авторы пришли к выводу, что покачивание летательного аппарата не связано с аэродинамическим влиянием небольшого расстояния до земли — причина оказалась в автоматической корректировке позиции беспилотника по камере оптического потока.
Камера оптического потока представляет собой обычную камеру, обычно закрепляемую снизу летательного аппарата, и служит для определения скорости передвижения дрона по смещению изображения. Похожим образом люди, находящиеся в движущемся автомобиле, могут определить скорость «на глаз» по смещению окружающих объектов и пейзажа.
Оказалось, что при посадке в заданной точке алгоритм при помощи камеры оптического потока отслеживает положение дрона над указанным местом и самостоятельно компенсирует смещение летательного аппарата — например, если его сдувает ветром. При этом с определенной высоты поверхность становится настолько близкой, что малейшее смещение изображения в камере оптического потока приводит к запуску непрекращающегося покачивания всего беспилотника. При этом исследователи выяснили, что амплитуда покачиваний квадрокоптера всегда привязана к конкретной высоте.
Таким образом, отмечают авторы, летательный аппарат по возникновению таких колебаний можно с достаточно высокой точностью определить высоту и высчитать удачный момент для посадки и отключения двигателей. При этом для подобного маневра нет необходимости в датчиках расстояния, альтиметре или ресурсоемкой системе распознавания препятствий — при работе управляющее программное обеспечение опирается только на данные камеры оптического потока.
Ученые полагают, что подобный метод можно использовать на серийно выпускаемых гражданских беспилотниках или в качестве запасной системы автоматической посадки на других летательных аппаратах. Кроме того, исследователи полагают, что такой подход может объяснить, как справляются с оценкой расстояний до объекта насекомые, у которых глаза расположены очень близко и не позволяют использовать полноценное стереоскопическое зрение.
Ранее исследователи из Цюрихского университета разработали прототип автономной системы стабилизации и вынужденной посадки для квадрокоптеров. Система из акселерометра, гироскопа, камеры, датчика измерения расстояния и управляющего микрочипа строит трехмерную карту поверхности под беспилотником и выбирает ровную площадку и безопасную траекторию, после чего дрон самостоятельно садится в выбранное место.
Он надежно обхватывает хрупкие предметы, не повреждая их
Инженеры из Японии и Вьетнама разработали мягкий манипулятор ROSE, способный бережно захватывать хрупкие предметы, не повреждая их. Он состоит из мягкой воронкообразной оболочки, напоминающей цветок розы, которая способна скручиваться, равномерно обхватывая предмет, оказавшийся внутри. Благодаря своей универсальности и прочности манипулятор может пригодиться в сельском хозяйстве для сбора урожая. Доклад с описанием конструкции был представлен на конференции Robotics: Science and Systems, 2023. При поддержке Angie — первого российского веб-сервера Чтобы робот мог безопасно взаимодействовать с хрупкими объектами, его обычно оснащают манипуляторами, в конструкции которых присутствуют мягкие материалы. Нередко их устройство в той или иной степени имитирует анатомию человеческой руки. Например, пальцы трехпалого захвата EndoFlex с внутренней стороны покрыты мягким силиконом. Однако для управления манипуляторами такого типа обычно требуются несколько актуаторов и сложные алгоритмы позиционирования, которые позволяют подстраивать пространственное положение пальцев и руки в соответствии формой и положением захватываемого предмета. Кроме это, сила прикладывается к объекту неравномерно и только в точках соприкосновения с пальцами, поэтому ее может оказаться недостаточно для удержания. Манипулятор, разработанный инженерами под руководством Ван Ан Хо (Van Anh Ho) из Японского национального института передовых промышленных наук и технологи, имеет более простую конструкцию и для полноценной работы достаточно только одного актуатора. Принцип его работы напоминает раскрытие цветка розы, поэтому разработчики дали ему название ROSE. Рабочая часть манипулятора представляет собой прочную оболочку из силиконовой резины (первые повреждения на изогнутом краю появились только после 400 тысяч циклов срабатывания), которая образует двустенный стакан. Внешняя часть оболочки прикреплена нижней частью к круглому пластиковому основанию с отверстием в центре, а внутренняя воронкообразная поверхность к вращающемуся цилиндру, вставленному в центральное отверстие основания. При вращении внутренней оболочки относительно внешней происходит сжатие манипулятора. Если при этом во внутренней полости оказывается предмет, то он равномерно обхватывается с боков. Усилие и площадь обхвата можно регулировать с помощью угла закручивания оболочек относительно друг друга, а также нагнетанием давления воздуха в пространство между стенками стакана. Для изучения характеристик манипулятора его присоединили к роборуке UR5. Испытания показали, что захват может выдержать максимальную нагрузку около 328 Ньютон при собственной массе захвата 49 грамм, что дает значение соотношения грузоподъемности к весу примерно 6800 процентов от массы захвата вместе с ротором. Манипулятор может бережно и безопасно обхватывать хрупкие предметы различной формы и размеров не нанося им повреждений. В экспериментах использовались стальные шары, фрукты, клейкая лента, банка с кофе и куриное яйцо, которое захват легко вытащил из миски с оливковым маслом, что довольно трудно осуществить, так как из-за масла яйцо становится скользким. Кроме этого, ROSE может захватывать и сыпучие материалы, например, гравий и гальку. https://www.youtube.com/watch?v=E1wAI09LaoY Инженеры придумали способ, с помощью которого манипулятору можно добавить способность «чувствовать» захватываемый предмет. Для этого они разместили множество небольших меток с внутренней стороны оболочки. Их положение контролируется с помощью компьютерного зрения через три небольшие камеры, закрепленные на пластиковом основании манипулятора. По мнению разработчиков, ROSE мог бы пригодиться в сельском хозяйстве для сбора урожая и не только. В будущем они планируют продолжить работу над математической моделью деформации оболочки при скручивании. Иной тип мягкого манипулятора продемонстрировали инженеры из Австралии. Он способен ухватывать предметы, обвиваясь вокруг них как щупальце осьминога.