Австрийские ученые обнаружили неожиданное поведение гидроксильной группы на поверхности перовскитного материала, демонстрирующее границы применимости химии поверхностей. Работа опубликована в Nature Materials.
Команда австрийских ученых из технического университета Вены изучила адсорбцию воды на поверхности перовскитного материала при помощи фотоэлектронной спектроскопии и низкотемпературного туннельного микроскопирования и обнаружила неожиданное поведение гидроксильной группы. Для экспериментов ученые использовали искусственно выращенный монокристалл рутената стронция (материал, структурно принадлежащий к перовскитам, формула Srn+1RunO3n+1 (n = 1, 2) со структурой Раддлесдена-Поппера (то есть состоящий из суммы структур поваренной соли и перовскитных блоков). Ученые раскололи рутенат стронция по плоскостям SrO, получив таким образом почти идеальные ровные поверхности, составленные только из атомов стронция и кислорода.
Попадая на подобную поверхность, вода диссоциирует: атом водорода отрывается от молекулы H
O и присоединяется к атому кислорода кристаллической решетки. При этом несмотря на то, что водород и гидроксильная группа физически оказываются разделенными, между ними возникает слабая водородная связь — то есть они продолжают взаимодействовать.
Это вызывает любопытный эффект: гидроксильная группа (OH) не может двигаться свободно и кружит вокруг атома водорода. Причем происходит это только при условии, что слой воды очень тонок — в противном случае адсорбция воды происходит уже на молекулярном уровне (то есть молекула H
O не разделяется, но заполняет молекулярные промежутки в материале).
По словам ученых, подобный процесс теоретически был предсказан несколько лет назад, но наблюдать его
удалось впервые. Опыты австрийских ученых не только подтверждают специфические свойства пероксидных материалов, но также дают расширенные представления о химии поверхностей.
Перовскит — относительно редкий для Земли минерал титанат кальция (CaTiO3), известный своей кристаллической решеткой. Атомы титана в перовските расположены в узлах слабо искаженной кубической решётки. В центрах псевдокубов располагаются атомы кальция. Атомы кислорода образуют вокруг атомов титана практически правильные октаэдры, которые немного развернуты и наклонены относительно идеальных положений. К группе перовскита относятся сложные оксиды, кристаллизующиеся в структурном типе перовскита, характеризующиеся общей формулой ABO3. Структурой перовскита (или производной от него) обладают высокотемпературные сверхпроводники, ионные проводники, а также многие магнитные и сегнетоэлектрические материалы. Журнал Science включил перовскит в топ-10 прорывов 2013 года, подразумевая возможность использования его в солнечной энергетике.
Александра Стуккей
Эрик Д. Демейн (Erik D. Demaine) из Массачусетского технологического университета и Томохиро Тачи (Tomohiro Tachi) из Токийского университета представят на конференции SoCG 2017 новый алгоритм создания оригами, который генерирует схемы складывания объектов сложной формы с минимальным количеством швов. Об этом сообщает Geektimes.