Исследователи из Брауновского Университета представили первое устройство для мультиплексирования терагерцевых волн. Оно представляет собой антенну вытекающей волны на основе металлического плоскопараллельного волновода. Работа опубликована в Nature Photonics.
Мультиплексор представляет собой две металлические пластины, в одной из которых имеется небольшой разрез. Пластины расположены параллельно друг другу так, чтобы образовать волновод. В ходе распространения по волноводу, часть терагерцевого излучения «утекает» через разрез, причем угол «утечки» зависит от частоты излучения.
По словам авторов, архитектура представленного устройства обеспечивает уникальный метод управления распределением спектра путем изменения расстояния между пластинами. Подобный подход позволяет независимо контролировать как центральную частоту, так и пропускную способность мультиплексированных терагерцевых каналов. По словам Николаса Карла, первого автора публикации, устройство является лишь проверкой концепции, они еще многое способны в нем улучшить, и группа продолжит исследовать его.
Мультиплексор это устройство, используемое для объединения различных потоков данных в один. Эта технология позволяет передавать по одному телевизионному кабелю несколько сигналов различных каналов, а по оптоволоконному кабелю – тысячи параллельных звонков. Устройство, противоположное ему по функции, называется демультиплексором.
Теоретически, терагерцевые волны позволяют передавать информацию во много раз быстрее менее энергетичных радиоволн, которые используются сейчас в сотовых и Wi-Fi сетях. Применение излучения такой частоты для передачи информации сегодня ограничено из-за несовершенства существующих излучателей и приемников. Наиболее известные устройства, работающие с терагерцовым излучением — «раздевающие сканеры» в аэропортах. Однако буквально на днях компания Fujitsu представила первый мобильный ресивер терагерцового излучения.
Пока лишь со скоростью 1,6 миллиметра в секунду
Американские инженеры разработали робота, способного автономно передвигаться в толще сыпучего материала, проталкивая себя вперед с помощью двух конечностей, напоминающих плавники. В испытаниях робот продемонстрировал способность передвигаться в песке на глубине около 127 миллиметров со скоростью до 1,6 миллиметра в секунду. Статья опубликована в журнале Advanced Intelligent Systems. Сыпучие материалы, такие как песок, мягкие почвы, снег или лунный реголит, представляют собой довольно сложную среду для передвижения. Объекты, движущиеся в их толще, испытывают высокое сопротивление, возрастающее с глубиной погружения. Кроме того, сыпучая среда ограничивает возможности зондирования и обнаружения препятствий. Тем не менее инженеры пытаются создать роботов, способных передвигаться в таких условиях. Например, американские разработчики представили прототип робочервя, способного двигаться в толще песка. Для снижения сопротивления он выдувает перед собой воздух, и одновременно разматывает мягкую оболочку своей передней части, выталкивая ее вперед, в то время как остальное тело остается неподвижным. Это позволяет значительно снизить сопротивление движению. Однако для его работы требуется воздух, который приходится подводить с поверхности. Создать робота, который смог бы передвигаться в песке автономно, решили инженеры под руководством Ника Гравиша (Nick Gravish) из Калифорнийского университета в Сан-Диего. Разработанный ими робот перемещается, проталкивая себя вперед через толщу сыпучей среды с помощью двух гибких конечностей, напоминающих плавники морской черепахи. Конечности состоят из пяти звеньев. Каждое звено способно вращаться относительно предыдущего, но углы их отклонений ограничиваются с помощью фиксаторов. В движение оба плавника приводятся через червячную трансмиссию с помощью единственного электромотора. При этом трансмиссия воздействует только на первые ближайшие к корпусу звенья. Благодаря фиксаторам, ограничивающим углы поворотов звеньев, при движении вперед конечности изгибаются, испытывая меньшее сопротивление среды, а при движении назад наоборот, распрямляются, позволяя роботу отталкиваться от песка. На концах конечностей разработчики поместили сенсоры, с помощью которых робот может обнаруживать расположенные сверху объекты. Корпус робота длиной около 26 сантиметров имеет прямоугольное сечение и утолщение в передней части, которое позволяет снизить сопротивление песка при движении. Нос робота заострен и имеет наклонную поверхность сверху, которая необходима для компенсации подъемной силы, возникающей при движении в песке. С этой же целью по бокам после проведенных тестов пришлось разместить два дополнительных наклонных неподвижных плавника, так как робот имел тенденцию задирать нос при движении под действием выталкивающей силы. Чтобы избежать попадания песчинок в механизм, конечности поместили в чехлы из нейлоновой ткани. Разработчики протестировали робота, погруженного на глубину 127 миллиметров в песок, сначала в небольшом искусственном резервуаре, а после в естественных условиях в песке на пляже. В сухом песке робот смог развить скорость 1,6 миллиметра в секунду. В более влажном песке на пляже робот двигался медленнее, со скоростью около 0,57 миллиметра в секунду. В будущем инженеры планируют увеличить скорость передвижения робота, а также научить его самостоятельно погружаться в песок. Ранее мы рассказывали об исследовании, в котором физики выяснили, что происходит со структурой песка при передвижении по нему с помощью прыжков. Они обнаружили, что при правильно подобранном времени задержки между приземлениями и новым толчком, можно увеличить высоту прыжка на 20 процентов и даже больше.