Зачем учить искусственные материалы транспирировать
Деревья выкачивают из земли десятки литров за день, не пошевелив ни корнем, ни веткой — вода все делает сама. Рассказываем, какая физика заставляет воду устремляться по стволу в небо, и зачем ученые пытаются воспроизвести этот процесс в искусственных материалах, на примере недавнего изобретения физиков из Ливерморской национальной лаборатории.
Понятно, для чего потеет человек: так наше тело удерживает свою температуру в нужных пределах. На испарение тратится много теплоты, поэтому для терморегуляции его используют многие животные. Даже если потовых желез на теле мало, охлаждаться можно, испаряя воду и с других открытых поверхностей: собаки для этого высовывают язык из пасти, а птицы открывают клюв и начинают чаще дышать.Кроме управления температурой, потоотделение помогает животным выводить из организма избыток жидкости, солей и вредные вещества, а также создавать собственный запах, иногда нужный для социальных взаимодействий. Регуляция работы потовых желез — сложный гормональный процесс, а его сбой приводит, например, к гипергидрозу — избыточному потоотделению, которое свидетельствует не о высокой температуре окружающей среды, а о каких-то функциональных нарушениях.
Для растений испарение воды на листьях — куда более важный процесс, чем для животных. Оно тоже помогает им с терморегуляцией в жаркую погоду. Но помимо этого у «потоотделения» деревьев есть другая, намного более важная функция.
Носителем полезных веществ для растений служит вода (как, впрочем, и у животных). С восходящими токами по стволам берез и елей идут минеральные вещества, которые корни извлекли из почвы и отправили к стеблям, листьем и цветкам. Те взамен отправляют вниз растворы сахаров, полученных в ходе фотосинтеза.
Но у растений нет сердца. Наш «мотор» поддерживает циркуляцию крови в замкнутой системе сосудов. У растений вместо этого — множество маленьких «насосиков» и параллельных «труб», из которых образуются две проводящие ткани, ксилема и флоэма. По клеткам ксилемы вода поднимается от корней к листьям, а по клеткам флоэмы — отправляется от листьев в обратном направлении. Как артерии несут кровь, богатую кислородом, от легких к другим органам, а вены — от органов обратно к легким, так и флоэма — несет воду, богатую сахарами, от листьев к другим органам, а ксилема — воду без сахаров в обратном направлении к листьям.
Только происходит этот перенос не за счет сложных физиологических процессов, а по более простым фундаментальным физическим механизмам. Поэтому никакой дополнительной энергии на этот транспорт не приходится тратить ни розовому кусту, ни стометровой секвойе. Вода сама устремляется вверх по их стволам. Лес — это тысячи фонтанов, бьющих в небо.
Для транспорта воды растения используют два механизма: корневое давление толкает жидкость снизу, а капиллярные силы — тянут вверх.
Давление снизу возникает из-за избыточной солености в корне по сравнению с почвой. Этот перепад создает осмотическое давление, и вода стремится это недоразумение сгладить — так растение «пьет». Корневое давление иногда может достигать шести атмосфер, но в одиночку оно справляется с прокачкой воды только через очень невысокие растения. Основную работу по подъему воды наверх совершает уже атмосфера.
Если влажность снаружи не стопроцентная, то воды в воздухе всегда не хватает. Внутри растения же этой воды, высосанной из почвы, наоборот, довольно много. И если не запирать ее внутри стеблей и листьев насильно, то воздух будет тонкими струйками пара тянуть ее с поверхности растений.
У некоторых растений есть своеобразный аналог гипергидроза. Если окружающая температура слишком высокая, а относительная влажность близка к ста процентам, то вода просто не успевает испаряться через устьица на листьях. В таких ситуациях у некоторых тропических растений избыток жидкости выводится за счет гуттации — альтернативного механизма вывода воды с поверхности растения, который выдавливает лишнюю воду из растения полностью за счет корневого давления.
Этим процессом растения управляют при помощи устьиц — своеобразных потовых желез, покрывающих поверхность листьев. Если устьице открыто, то вода через него испаряется в воздух, а на освободившееся место из сосуда подтягивается новая. Если устьиц открыто много — а на квадратный миллиметр листа их приходится примерно 300 штук, поэтому у дерева их миллионы, — то с помощью транспирации можно прокачивать через растение большие объемы воды. Ель выкачивает из земли и поднимает в свою крону до 50 литров воды в сутки, а у бука счет идет уже на сотни литров. Самому растению для метаболизма из всей этой воды нужно не больше пары процентов, вся остальная, поднявшись наверх, просто уходит в воздух, превращаясь в пар.
Обратный ток, от листьев к внутренним частям стебля и корням, переносит продукты фотосинтеза. Механизм флоэмного транспорта, транслокация, чуть сложнее. От листьев к другим органам воду заставляет двигаться тоже осмотическое давление — просто, в отличие от корня, здесь оно возникает из-за разницы в концентрации сахаров между утекающей водой и потоком, который поднимается по ксилеме наверх неподалеку (поэтому флоэмный транспорт зависит от транспирации). За счет комбинации осмотических, гидростатических и капиллярных сил жидкость во флоэме разгоняется до десятков сантиметров в час.
Скорость транспирации (ей растение управляет, раскрывая или прикрывая устьица) изменяет количество воды, забираемой из почвы. А это, соответственно, влияет на ее влажность.
Из-за этого, например, одинаковое изменение состава атмосферы может по-разному изменить климат в разных регионах Земли. Например, тропические леса в бассейне Амазонки находятся довольно далеко от моря, поэтому влажность воздуха очень сильно зависит от транспирации, скорость которой определяется шириной раскрытия устьиц. А поскольку работа устьиц, которые регулируют еще и газообмен, завязана на концентрацию газов в атмосфере, то повышение концентрации CO2 неизбежно затормозит скорость переноса воды из почвы в воздух и сделает его суше. В тропиках Юго-Восточной Азии, однако, роль транспирации не столь велика. В такой ситуации намного заметнее эффект от увеличения разницы температуры воздуха над сушей и морем и усиления ветра с моря. Он приносит с собой большое количество облаков и повышает уровень осадков и влажность воздуха.
Ученые любят красть у природы технологии. С испарением для охлаждения все довольно просто: его технически несложно исполнить, причем практически в любой области. Японские инженеры еще в 2016 году создали потеющего робота, у которого система пассивного охлаждения моторов работала на испарении воды. А в прошлом году для микроэлектронных устройств, где просто нет места для вентиляторов, китайские ученые предложили специально конденсировать воду в металлоорганические каркасные структуры на поверхности устройства, чтобы потом просто испарять ее за счет избыточного нагрева.
Использовать древесину в качестве строительного материала человек начал очень давно. Даже научился выращивать ее ex planta, «в пробирке». Создал искусственные материалы, воспроизводящие механические свойства ксилемы. А вот мощный насос на движке испарения сделать оказалось намного сложнее.
Чтобы реализовать в искусственных трехмерных системах пассивный капиллярный транспорт за счет транспирации, нужно специально увеличивать эффективную площадь, с которой происходит испарение. И обычные капилляры, и микрофлюидные каналы — это закрытые системы, вода контактирует с воздухом только в конце своего пути. Поэтому основной способ решения этой проблемы — увеличивать площадь испаряющей поверхности. Растение эту задачу решает экстенсивно: на одном листе могут быть десятки тысяч устьиц.
Но если взялся подражать, сложно остановиться на достигнутом. Если уже получил дерево, почему бы его не доработать?
Одно из таких решений — убрать внешние стенки капилляра. Удержать в нем воду будет сложнее, зато скорость транспирации резко возрастет — ведь испарение будет происходить с каждого миллиметра открытой части капилляра, а не только с кончика. Именно такой способ выбрали американские физики из Ливерморской национальной лаборатории, чтобы сделать платформу для капиллярного транспорта, основанного на искусственной транспирации.
Помимо общего физического принципа, ученые подсмотрели у растений еще один важный базовый принцип для строительства искусственных капилляров сложной формы — они составляли их из небольших одинаковых элементов, благодаря чему их платформа стала масштабируемой и позволяет строить капилляры практически любой формы. В растении проводящие каналы состоят из клеток — члеников сосудов, в искусственном капилляре их место заняли миллиметровые каркасные кубики, как раз такого размера, чтобы совпадать с капиллярной длиной воды — чтобы сила поверхностного натяжения, которая тянет жидкость вверх, превосходила силу тяжести, которая тянет вниз.
Вершины кубика ученые соединили по ребрам и диагоналям: в эксперименте вода заполняла каждый из них, карабкаясь по этим соединениям, за пару сотен микросекунд.
Такие «клетки» легко печатать на 3D-принтере, их можно собирать в столбики, кубы или разветвленные деревья. Одна такая ячейка заполняется водой за несколько миллисекунд, а столбик из четырех ячеек — за десятые доли секунды. При этом практически вся поверхность жидкости находится в контакте с воздухом. Поэтому если опустить разветвленное дерево, составленное из таких элементов, в чашку с водой, то в нем можно запустить процесс транспирации, который обеспечивает и транспорт жидкости, и охлаждение. Такое дерево еще не секвойя и даже не ель, но оно уже может прокачивать через себя до семи миллилитров воды в минуту (то есть десять литров воды в день при бесконечном резервуаре с водой и постоянной температуре и влажности воздуха) — скорость соизмерима со скоростью испарения на фильтровальной бумаге. Конечно, эта величина сильно зависит от разницы температур, влажности и геометрии самого дерева.
Испаряет искусственная ель медленнее настоящей, зато напечатать «клетки» для нее можно из совсем разных материалов и менять за счет этого смачиваемость или, например, проводимость дерева. И управлять таким образом скоростью транспорта или прокладывать маршрут для жидкости по сложной трехмерной сетке.
Огромная площадь открытой поверхности не только ускоряет транспорт жидкости за счет испарения, но и позволяет «ловить» водой растворимые газы. Ученые показали, что если в воздухе достаточно углекислого газа — даже с не очень высоким парциальным давлением, — то на таком открытом капилляре с иерархической структурой можно за пять минут захватить 0,3 моль газа на каждый моль сорбента в водном растворе. А после захвата газа по каркасным миллиметровым веточкам можно транспортировать жидкость с уже адсорбированным газом в нужном направлении.
Основное достоинство такой платформы — огромная площадь открытой поверхности жидкости. Испарение с этой поверхности позволяет управлять скоростью транспорта жидкости, захват газа — проводить какие-то операции с ним, а на границе между ними могут протекать какие-то коллоидные процессы.
Что дальше? Можно двигаться в сторону совмещения открытых капиллярных систем с микрофлюидными устройствами. Так, собственно, и поступили растения. Устьица, открывая капилляры, управляют газообменом и транспирацией — взаимодействием жидкости с атмосферой, ускоряя или замедляя движение воды по капиллярам. А клетки проводящих тканей обеспечивают транспорт воды уже внутри растения. Совместная работа этих систем поддерживает жизнь дерева. С открытыми капиллярными каналами того же можно добиться и в искусственном дереве, не просто повторив форму дерева настоящего, а воспроизведя некоторые его функции (а при желании — расширив их). Можно собрать транспортную систему, через которую за счет испарительной тяги течет жидкость, — и получить сенсор, который улавливает газ из воздуха, а потом отправляет его уже по замкнутым микрофлюидным капиллярам для анализа и дальнейших операций. Или даже создать искусственный лес, чтобы вытянуть побольше влаги из земли в воздух. Изменения климата это, конечно, не остановит, но может принести кому-то временную прохладу.
Ее температура на прямом солнце оказалась до двух градусов ниже окружающего воздуха
Китайские ученые разработали многослойные цветные пленки, которые могут охлаждать поверхность до двух градусов Цельсия по сравнению с температурой окружающей среды. Высоко-насыщенный цвет этих пленок — до 100 процентов цветопередачи — виден в широком диапазоне углов (± 60 градусов). На создание такой структуры физиков вдохновили бабочки вида Morpho menelaus. Статья опубликована в журнале Optica. Большинство искусственно созданных красок работают из-за поглощения части диапазона видимого света, что может приводить к существенному нагреву окрашенных ими предметов. Чтобы предотвратить нежелательный нагрев часто используют белую краску, которая практически полностью отражает солнечную энергию. Создание разноцветных поверхностей, которые при этом не нагреваются — до сих пор сложная задача. Однако в природе встречается и другой способ цветовой передачи. Например у некоторых бабочек цвет крыльев возникает при возникновении интерференции из-за специфического отражения света от периодической структуры их крыльев. Ван Гопин (Guo Ping Wong) с коллегами из Шеньчжэньского университета предложили свое решение проблемы нагрева окрашенных поверхностей, как раз вдохновившись структурой крыльев бабочек M. menelaus. Благодаря многослойности и наличию неупорядоченных компонентов, крылья бабочек этого вида передают высокую насыщенность синего цвета в широком угле обзора. Ученые воссоздали аналогичную структуру, поместив нескольких слоев из оксидов титана TiO2 и кремния SiO2, на матовое стекло, расположенное на отражающей серебряной поверхности. Ученые оптимизировали толщину верхних слоев и добились полного отражения нежелательного желтого света. При этом синий свет свободно проникал через верхнюю многослойную структуру, испытывал диффузное отражение от неупорядоченного матового стекла, отражался от серебряного зеркала и, возвращаясь через верхнюю многослойную структуру, обеспечивал насыщенный синий цвет образца. В результате ученым удалось добиться высокой насыщенности синего цвета, до 100 процентов, в угле обзора ±60 градусов, за исключением узкого диапазона — зеркального по отношению к падающему свету — в котором отражался желтый цвет. При этом эта пленка обеспечила охлаждение до двух градусов Цельсия ниже температуры окружающей среды, что сравнимо с эффективностью бесцветной охлаждающей пленки на основе серебра и полидиметилсилоксана (ПДМС). Охлаждение образца происходило за счет высокой эффективности диффузного отражения синей части спектра, малого поглощения нежелательной части видимого спектра и ближнего инфракрасного излучения, а также из-за высокого излучения в среднем инфракрасном диапазоне. Ученые создали по той же технологии образцы различных цветов и экспериментально измерили их способность охлаждать поверхности, располагая их на крыше здания института и на автомобилях. Обычная синяя краска при температуре воздуха 27 градусов Цельсия и на прямом солнце нагревалась в этих экспериментах до примерно 70 градусов. А образцы новой пленки в тех же условиях продемонстрировали температуру поверхности до 45 градусов ниже. Авторы статьи подсчитали, что за обычный метеорологический год в Шеньчжене замена обычной синей краски на охлаждающую могла бы привести к сохранению около 1377 мегаджоулей на квадратный метр энергии, требующейся на охлаждение. Ученые полагают, что дальнейшая оптимизация структуры пленок, например замена серебра на многослойный диэлектрик, позволит еще больше увеличить охлаждающий эффект. Ученых не в первый раз привлекла способность неупорядоченных структур в природных объектах к охлаждению. Они хорошо рассеивают солнечный свет, что можно использовать, например, для предотвращения таяния льдов.