Мнение редакции может не совпадать с мнением автора
Законы физики работают везде. Добавив молоко в чай или кофе и быстро размешав ложкой, в течение доли секунды можно наблюдать, как жидкости увлекают друг друга по спирали. Похожие «водовороты» видны из космоса, когда потоки теплого и холодного воздуха встречаются друг с другом, образуя циклоны. Оба явления, несмотря на кажущуюся разницу, можно объяснить одинаково. В книге «Физика и жизнь. Законы природы: от кухни до космоса» (издательство «Манн, Иванов и Фербер»), переведенной на русский язык Иваном Веригиным, физик Элен Черски на примерах демонстрирует, как знание физических принципов позволяет иначе смотреть на повседневные мелочи, лучше понимать большую науку, а также отмечать любопытные связи и закономерности: например, что объединяет велосипедистов и скорпионов, куриные яйца и гироскопы космического телескопа «Хаббл», лопающийся попкорн и запуск ракеты в космос. N + 1 предлагает своим читателям ознакомиться с отрывком, посвященным экспериментам немецкой домохозяйки, которая помогла ученым исследовать поверхностное натяжение.
Вязкость имеет значение при движении объектов малого размера через определенную жидкость: шарики жира поднимаются в молоке или крошечные болезнетворные бактерии опускаются в воздухе. Поверхностное натяжение, партнер вязкости в микромире, сказывается в месте соприкосновения двух разных текучих сред. В повседневной жизни мы наблюдаем это явление при соприкосновении воздуха с водной поверхностью. Типичный пример смешивания воздуха с водой — воздушный пузырек*. Итак, начнем с пенистой ванны.
Звук наполняющейся водой ванны вызывает у нас приятные ощущения. Он объявляет о заслуженном вознаграждении после тяжелого трудового дня, возможности восстановиться после напряженного теннисного матча или просто немного себя побаловать. Но как только вы наливаете пену для ванн, звук меняется. По мере образования пены глубокий рокот затихает и смягчается, и определить границу, где поверхность ванны соприкасается с воздухом, становится сложно. Воздушные карманы захватываются внутрь водяных клеток, и все, что для этого понадобилось, — немного жидкости из флакона с пеной для ванны.
Честь разгадать тайну поверхностного натяжения принадлежит группе европейских ученых, сделавших это в конце XIX века. Люди викторианской эпохи обожали пузырьки. С 1800 по 1900 годы производство мыла резко увеличилось, поскольку творцам промышленной революции без него было не обойтись. Мыльная пена давала людям викторианской эпохи обильную пищу для морализаторства, будучи идеальным символом моральной чистоты и безгрешности. К тому же она была замечательным примером классической физики в действии — буквально за несколько лет до появления специальной теории относительности и квантовой механики, которые всадили острую иглу в непомерно раздувшееся к тому времени представление о такой аккуратной, уютной и добропорядочной Вселенной. Но даже серьезные джентльмены в лоснящихся цилиндрах и с солидными бородами не смогли проникнуть в тайны науки о пузырьках. Пузырьки были настолько универсальны, что никто не решался к ним подступиться, за исключением Агнес Поккельс, которую зачастую описывают как «простую немецкую домохозяйку», хотя в действительности она была довольно проницательной и критически мыслящей личностью, использовавшей весьма ограниченный набор материалов и изрядную долю находчивости, чтобы самостоятельно исследовать поверхностное натяжение.
Рожденная в 1862 году в Венеции, Агнес принадлежала к поколению, которое было твердо убеждено, что место женщины — у домашнего очага. Именно там она и пребывала, когда ее брата отправили учиться в университет. Но Агнес осваивала премудрости физики с помощью учебных материалов, которые ей присылал брат, проводила собственные физические эксперименты в домашних условиях и внимательно следила за происходящим в научном мире. Когда она узнала, что знаменитый британский физик лорд Рэлей начал проявлять интерес к поверхностному натяжению — явлению, с которым она немало экспериментировала, — Агнес написала ему письмо, в котором описала свои результаты. Оно настолько впечатлило ученого, что он отправил его для публикации в журнале Nature, чтобы с ним могли ознакомиться величайшие научные мыслители того времени.
То, что сделала Агнес, было очень простым и в то же время остроумным. Она подвесила на нитке маленький металлический диск (размером с кнопку) так, чтобы он улегся на поверхность воды, а затем измерила величину силы, которая необходима, чтобы оторвать его от поверхности воды. Загадка заключалась в том, что вода стремилась удержать диск, и чтобы оторвать его, требовалось больше силы, чем для его поднятия с поверхности стола. Это дополнительное усилие называется поверхностным натяжением, стало быть, Агнес измеряла силу поверхностного натяжения. Потом она смогла изучить поверхность воды, хотя тонкий слой молекул, обусловливающий действие этой силы, был настолько мал, что у Агнес не было возможности исследовать его непосредственно. Как именно ей это удалось, мы узнаем ниже, но сначала вернемся к ванне.
Ванна, наполненная чистой водой, представляет собой огромное скопление хаотически движущихся и сталкивающихся друг с другом молекул. Но одна из характерных особенностей воды заключается в сильном притяжении всех этих молекул друг к другу. Каждая такая молекула со стоит из большого атома кислорода и двух поменьше атомов водорода (что соответствует хорошо знакомой нам химической формуле воды — H2O). Атом кислорода находится посередине; с двух сторон к нему прикреплено по одному атому водорода: получается нечто наподобие слегка сплюснутой буквы V. Несмотря на то что атом кислорода очень прочно соединяется со своими двумя атомами водорода, он не прочь пофлиртовать с любыми другими атомами водорода, находящимися поблизости. Поэтому он постоянно притягивает к себе атомы водорода, принадлежащие другим молекулам воды. Именно этим обусловливаются многие ее свойства. Данное явление называется водородным связыванием и отличается высокой прочностью. В ванне молекулы воды постоянно притягиваются к другим молекулам воды, в результате чего вода имеет вид однородной и связной субстанции.
Молекулы на поверхности воды в некотором смысле «полубеспризорные». Они притягиваются молекулами, расположенными под ними, но над ними нет ничего такого, что тянуло бы их вверх. Таким образом, они испытывают на себе действие сил, которые тянут их вниз и в стороны, но не вверх, в результате чего поверхность воды ведет себя подобно эластичной пленке, туго натянутой поверх всех молекул воды, расположенных под верхним слоем, и стягивающейся внутрь в попытке максимально сократить свой размер. Это и есть поверхностное натяжение.
Когда вы поворачиваете кран, воздух затягивается вниз, в ванну, что приводит к образованию воздушных пузырьков. Но всплывя на поверхность, они не могут продолжать существование. Круглый купол пузырька растягивает эту поверхность, а поверхностное натяжение недостаточно сильно для того, чтобы стянуть ее обратно. Поэтому пузырьки лопаются.
Агнес провела следующий эксперимент: взяла пуговицу и добилась, чтобы действующая на нее сила была недостаточной для того, чтобы пуговица оторвалась от поверхности воды (пуговица плавала на ее поверхности). Затем капнула на поверхность воды веществом наподобие моющего средства вблизи того места, где находилась пуговица. Примерно через секунду пуговица оторвалась от поверхности. Моющее средство распространилась по воде, снизив поверхностное натяжение. Таким образом, чтобы снизить поверхностное натяжение, нужно создать тонкий верхний слой, чтобы молекулы воды не были тем единственным, что составляет ее поверхность.
Добавляя пену для ванны, можете попрощаться с чистой, гладкой, минимальной поверхностью. Небольшое количество ароматизирован ной жидкости проникает в воду и тотчас принимается за дело. У каждой молекулы этой жидкости один конец обожает, а другой ненавидит воду. Если концу, который ненавидит воду, удастся найти хотя бы немного воздуха, он цепляется за него, но водолюбивый конец тоже не сдается. В итоге в любом месте, где вода соприкасается с воздухом, тонкий слой пены для ванн образуется прямо на этой поверхности. Толщина слоя равна размеру одной молекулы, а размер всех молекул одинаков, в результате чего все их водолюбивые концы погружены в воду, а концы, ненавидящие ее, пребывают в воздухе. При наличии тонкого покрытия большая поверхность не составляет проблемы. Пена для ванн не создает такого сильного натяжения, как вода, поэтому эффект эластичной пленки существенно ослабляется. Наступает момент, когда все самое интересное происходит на поверхности, — для чего, собственно говоря, и нужна пена. Снижая поверхностное натяжение, пена для ванн продлевает жизнь воздушных пузырьков, поскольку их большая поверхность оказывается гораздо устойчивее.
Вероятно, стоит отметить, что мы, как правило, ассоциируем белую пену с избавлением вещей от всевозможных загрязнений, однако в современных моющих средствах лучшее вещество для сцепления с водной поверхностью и образования пены не эквивалент лучшего вещества для удаления загрязнений и жировых пятен с одежды и посуды. Вы можете изготовить очень хорошее моющее средство, которое дает минимум пены (или вообще не образует ее). Более того, пена нам зачастую только мешает. Но производители моющих средств настоль ко убедили людей в том, что именно превосходная белая пена — подлинная гарантия безупречной стирки, что сами загнали себя в угол. Сейчас зачастую в моющие средства специально добавляют пенообразователи, чтобы обеспечить появление воздушных пузырьков и избе жать недовольства потребителей.
Подобно вязкости, поверхностное натяжение относится к числу явлений, наблюдаемых в повседневной жизни (то есть в макромире), хотя в большинстве случаев играет менее важную роль, чем гравитация и инерция. Но при переходе на уровень микромира его роль и место в иерархии сил существенно возрастают. Оно объясняет, почему запотевают очки и почему мы можем вытереть руки полотенцем. Но подлинная прелесть микромира заключается в том, что внутри одного гигантского объекта может происходить множество мельчайших процессов, причем их результаты суммируются. Например, оказывается, поверхностное натяжение, которое в тех или иных ситуациях доминирует лишь на микро уровне, обусловливает существование самых массивных живых существ на планете. Но чтобы обсудить эту тему, нам нужно рассмотреть еще один его аспект. Что происходит, когда поверхность, разделяющая газ и жидкость, ударяется о твердый предмет?
Подробнее читайте:
Черски, Э. Физика и жизнь. Законы природы: от кухни до космоса / Элен Черски ; пер. с англ. Ивана Веригина ; [науч. ред. А. Минько]. — Москва : Манн, Иванов и Фербер, 2021. — 336 с.