Для этого они изготовили одномолекулярный квантовый датчик
Загрузка галереи
Физики из Германии и Кореи измерили магнитные и электрические дипольные поля, исходящие от одного атома железа и димера серебра с субангстремным пространственным разрешением. Для этого они изготовили одномолекулярный квантовый датчик и разместили его на металлическом наконечнике сканирующего туннельного микроскопа. Статья опубликована в журнале Nature Nanotechnology.
Обнаружение и измерение слабых магнитных полей от одноэлектронных и ядерных спинов в атомном масштабе до сих пор остается проблемой в физике. В то время как современные мобильные квантовые датчики достигают чувствительности к одноэлектронному спину, атомное пространственное разрешение остается недостижимым для существующих методов.
Группа физиков под руководством Андреаса Хайнриха (Andreas J. Heinrich), Бэ Юджонга (Yujeong Bae) и Руслана Темирова (Ruslan Temirov) из Института фундаментальной науки в Сеуле и Института Петера Грюнберга в Юлихе измерила квантовое поле, создаваемое одиночным атомом с пространственным разрешением порядка размера атомов. Для этого ученые прикрепили к вершине металлического наконечника сканирующего туннельного микроскопа атом железа и молекулу PTCDA (3,4,9,10-перилентетракарбоновый диангидрид). Подавая радиочастотное напряжение на такой квантовый датчик, физики наблюдали за возникновением электронных спиновых резонансов, которые зависят от величины и направления магнитного поля.
Загрузка галереи
При помощи такого датчика ученые смогли измерить магнитные поля, возникающие вокруг одиночного атома железа и димера серебра, которые были расположены на подложке из серебра-111 (Ag111). Физикам удалось достичь энергетического разрешения порядка 100 наноэлектронвольт и пространственного разрешения порядка 0,02 нанометра.
Физики разрабатывают все более точные методы для измерений и манипуляций с объектами на атомном масштабе. Ранее мы писали, как ученым удалось настроить магнитное поле отдельного атома.
Алгоритм спектральной кластеризации определил направление спина на 50 процентов точнее, чем классический метод
Физики предложили способ маркировки парных гравитационных объектов с помощью контролируемого машинного обучения. Алгоритм спектральной кластеризации повысил точность на 50 процентов для определения спина и на 10 процентов для скорости вращения одного из компонентов. Результаты исследования опубликованы в Physical Review Letters.