Благодаря активности этих нейронов мыши научились различать стимулы, предшествующие наказанию и вознаграждению
Загрузка галереи
Венгерские нейробиологи выяснили, что в реакции на аверсивные стимулы вовлечены ГАМКергические нейроны базального переднего мозга, экспрессирующие парвальбумин. Когда мышей обучали различать два звуковых стимула, за одним из которых чаще всего следовало вознаграждение, а за другим — наказание, эти нейроны активировались во время наказания. Ингибирование этих нейронов нарушило обучение: мыши больше не различали два стимула. Ретроградное и антероградное отслеживания показали, что парвальбумин-экспрессирующие нейроны в этом регионе получают входные сигналы от гипоталамуса, прозрачной перегородки, прилежащего ядра и дорсального ядра шва, а сами проецируются на ключевые лимбические области. Статья опубликована в Nature Communications.
Эта новость появилась на N + 1 при поддержке Фонда развития научно-культурных связей «Вызов», который был создан для формирования экспертного сообщества в области будущих технологий и развития международных научных коммуникаций
Парвальбумин-экспрессирующие ГАМКергические нейроны базального переднего мозга (BFPVN) регулируют кортикальные гамма-колебания и участвуют в бодрствовании и возбуждении. А дегенерация этих нейронов связана со снижением когнитивных функций при болезни Альцгеймера и при старении. Кроме того, поражения базального переднего мозга вызывают дефицит внимания и обучения у грызунов. Все это указывает на то, что эти нейроны могут быть задействованы в ассоциативном обучении.
Чтобы разобраться в этом, Панна Хегедуш (Panna Hegedüs) и ее коллеги из Института экспериментальной медицины HUN-REN в Венгрии провели эксперименты на мышах. Они отслеживали активность парвальбумин-экспрессирующих нейронов горизонтального ядра диагональной полосы Брока (участка базального переднего мозга) во время ассоциативного обучения. Мышей, которым до этого не давали пить, сажали перед поилкой с водой, и включали поочередно два звуковых сигнала. За первым в 80 процентах случаев следовала награда — возможность попить воды из носика поилки, а в 20 процентах случаев — наказание или ничего. За вторым сигналом в 65 процентах случаев следовало наказание — струя воздуха в морду, в 25 процентах — награда, а в 10 процентах — ничего. Мыши вскоре поняли разницу и начинали облизываться часто, когда слышали первый сигнал, и реже — когда второй.
Около трети BFPVN мышей реагировали постепенно и линейно на появление любого из сигналов; 39 процентов этих нейронов реагировали на вознаграждение; и 75 процентов клеток откликались на наказание — быстрой фазовой активацией. Дополнительные эксперименты показали, что эти нейроны также реагируют и на другие аверсивные (то есть неприятные) стимулы — запах хищника или удар током.
Оптогенетическая активация BFPVN не вызывала у мышей реакции избегания, когда их сажали на экспериментальную арену, разделенную на два отсека, и стимулировали нейроны только в одном отсеке. Однако ингибирование этих нейронов во время обучения нарушало его: мыши облизывались одинаково часто в ответ на оба сигнала, несмотря на то, что за одним из них чаще следовало наказание, а не награда в виде воды. То есть подавление активности BFPVN приводило к тому, что мыши больше не меняли свое поведение в ответ на предсказывающий наказание стимул.
С помощью инъекции модифицированного вируса бешенства в нейроны базального переднего мозга ученые выяснили, от каких областей мозга сигналы приходят в BFPVN, и куда направляются дальше. Ретроградное отслеживание показало, что большая часть входных сигналов поступает от гипоталамуса, а остальные — от септальной области, прилежащего ядра, другой части диагональной полосы Брока и дорсального ядра шва. Большинство входных нейронов от дорсального ядра шва были глутаматергическими нейронами, экспрессирующими vGluT3 и vGluT2. Эти нейроны вовлечены в обработку негативного опыта.
Сами же BFPVN проецировались на медиальную перегородку, диагональную полосу Брока, ретроспленальную кору, гиппокамп и другие части лимбической системы — медиальное маммилярное ядро, супрамаммилярное ядро и паратениальный таламус. Небольшая часть проекций располагалась в областях префронтальной коры, прозрачной перегородки и дорсального ядра шва.
Другие клетки базального переднего мозга — холинергические нейроны — тоже быстро реагируют на аверсивные стимулы, однако стимуляция этих клеток не вызывает избегания или приближения. Считается, что эти клетки способствуют обучению, а не напрямую участвуют в двигательных эффекторных функциях. Авторы пришли к выводу, что и BFPVN, по всей видимости, тоже участвуют в когнитивной обработке аверсивных стимулов во время обучения — возможно, управляя вниманием животного и повышая возбудимость лимбических и корковых областей.
Ранее нейробиологи из США выяснили, что для ассоциативного обучения важен мозжечок — инактивация нейронов его заднелатеральной части не позволила макакам выучить визуомоторные ассоциации.
Хотя трубкозубы питаются в основном муравьями и термитами, они оказались основными распространителями семян растения <i>Cucumis humifructus</i>
Биологи установили, что основными распространителями семян Cucumis humifructus, африканского растения из семейства тыквенных, являются трубкозубы. Эти млекопитающие по запаху находят развивающиеся под землей плоды С. humifructus, выкапывают их, вскрывают кожуру когтями и вылизывают мякоть. Благодаря тому, что зубы трубкозубов сильно редуцированы, они не повреждают семена растения при поедании плодов, так что те могут выйти из их организма с пометом и прорасти. Для сравнения, если плод С. humifructus съест южноафриканский дикобраз, он разгрызет почти все семена. Как отмечается в статье для журнала Plants, People, Planet, вероятно, C. humifructus переместили плоды под землю, чтобы защитить семена от повреждения дикобразами и другими травоядными и гарантировать, что до них доберутся только трубкозубы.