Его размеры сравнимы с толщиной человеческого волоса
Физики из Великобритании создали самый маленький квантовый детектор света на кремниевом чипе. Его размеры всего 80 × 220 микрометров. Подробное описание разработки опубликовано в журнале Science Advances.
Эта новость появилась на N + 1 при поддержке Фонда развития научно-культурных связей «Вызов», который был создан для формирования экспертного сообщества в области будущих технологий и развития международных научных коммуникаций
В шестидесятых годах прошлого века развитие науки и технологии позволило создать миниатюрные полупроводниковые транзисторы и чипы. Это привело к бурному развитию информационных технологий, а в 1956 году за исследование транзисторного эффекта Уильям Шокли, Джон Бардин и Уолтер Браттейн получили Нобелевскую премию по физике. В наше время развитие квантовых компьютеров и квантовых вычислений требует разработки аналогичных миниатюрных чипов для генерации и регистрации квантов света, чтобы уменьшить размеры вычислительных систем. Ученые уже научились создавать некоторые типы миниатюрных источников квантов света и интегрировать их на полупроводниковые чипы. Однако помимо источников фотонов для вычислительных схем требуются и миниатюрные детекторы света.
Джоел Таскер (Joel F. Tasker), Джонатан Фразер (Jonathan Frazer), Джакомо Ферранти (Giacomo Ferranti) и Джонатан Мэттьюз (Jonathan C. F. Matthews) из Бристольского Университета смогли объединить на монолитном чипе всю электронику и кремниевую фотонику, необходимую для гомодинного обнаружения квантово-оптических сигнатур. Его удалось изготовить при помощи 250-нанометровой литографической биполярной КМОП-технологии. При этом размер чипа получился всего 80 × 220 микрометров.
Физики измерили полосу пропускания чипа, она составила 15,3 ± 0,1 гигагерц по уровню 3 децибел с максимальным клиренсом дробового шума 12 децибел. По словам ученых, такая производительность обеспечивается за счет монолитной электронно-фотонной интеграции, которая выходит за пределы емкости устройств, состоящих из отдельных интегрированных микросхем или дискретных компонентов.
Интегральный фотонный чип позволит, по мнению авторов, уменьшить размеры вычислительных систем, упростит сборку и повысит производительность.
Ранее мы писали об аналогичных успехах в сверхпроводниковых вычислительных схемах — физикам удалось разработать интегральный сверхпроводниковый переключатель микроволновых сигналов.
Благодаря нелинейному растяжению и сжатию жидкости
Физики научились контролировать диффузионные волны в веществе с помощью растяжения и сжатия жидкости в гиперболическом потоке. Метод позволил ученым получить волновой пакет, устойчивый даже при прекращении сжатия, что, в свою очередь, должно стать следующим шагом к передаче информации с использованием химических волн. Результаты исследования опубликованы в Physical Review Letters.