Без ухудшения параметров детектирования
Физикам удалось увеличить разрешение сверхпроводниковой камеры до 400 тысяч пикселей. Скорость работы и чувствительность камеры позволяет получать изображение от сигналов очень слабой мощности, а ее структура — масштабировать устройство в дальнейшем. Работа опубликована в Nature.
Детекторы на сверхпроводниках применяются во многих областях — от исследований черной материи до квантовых вычислений и коммуникации. Сложно выделить какой-то один параметр, по которому детекторы на сверхпроводниках превзошли полупроводниковые лавинные детекторы — они обладают и высокой эффективностью детектирования фотона (порядка 98 процентов) и небольшим мертвым временем (меньше трех пикосекунд), работают в диапазоне от ультрафиолета до ИК-излучения, а их темновой шум составляет не больше микрогерца.
Один из возможных путей развития технологии сверхпроводниковых детекторов — создание сверхчувствительных камер. Чтобы собрать из детекторов камеру, необходимо очень быстро и очень точно определять, какой именно детектор сработал. Для этого можно считывать сигнал отдельно с каждого детектора, подводя к нему свою шину, но такой подход сложно масштабировать — для 20 тысяч пикселей нужно 20 тысяч управляющих шин — такая система окажется очень громоздкой. Можно делать длинные детекторы и измерять время прилета электрона, обрабатывать эти данные и тоже получать изображения. Однако, и тут возникает сложность масштабирования — изготовить такие детекторы технически сложно.
Группа физиков из Национального института стандартов и технологий под руководством Адама Маккогана (A. N. McCaughan) объединила два этих подхода и сделала камеру с разрешением в 400 тысяч пикселей. Им удалось превзойти предыдущую реализацию камеры на сверхпроводниковых диодах в 20 раз.
Авторы собрали матрицу из детекторов, где у каждой строки и каждого столбца были свои шины считывания. Чувствительные области камеры, которые поглощают фотоны, чередуются с диэлектрическими прослойками, в которых плотность тока мала, поэтому они никак не реагируют на прилет фотона и позволяют отделять детекторы друг от друга.
Прилетевший фотон создает в цепи сопротивление, которое отводит ток смещения их детектора на нагревательный элемент термодатчика. Он, в свою очередь, генерирует фононы, которые разрушают сверхпроводимость и создает два противоположных по полярности напряжения импульса. Оба импульса распространяются по считывающей шине в разные стороны и с большими скоростями. По разности времен прихода можно определить, какой именно детектор сработал.
Физики следили за темновым шумом системы и отключали детекторы, которые вносили наибольший вклад в общий шум. Таких оказывалось всего порядка 58 на 1300 работающих исправно. Кроме этого очень важно следить за тем, чтобы детектор поймал фотон и конечный импульс добрался до шины передачи сигнала. Авторы отметили, что энергия, необходимая для срабатывания шины, на два порядка ниже реальной энергии, которую передает детектор. Единственная проблема, которую пока еще не удалось решить — это повышение эффективности оптического детектирования фотонов, с ней физикам еще предстоит разобраться.
Помимо создания камер на основе сверхпроводниковых детекторов ученые исследуют возможности сверхпроводников и в других направлениях. Например, создают детекторы, способные считать число фотонов (пока только до четырех) или увеличивают их в размере для повышения эффективности.
Он распался на кислород <sup>24</sup>O и четыре нейтрона
Японские физики синтезировали самый тяжелый на сегодняшний день изотоп кислорода 28O с магическим числом и нейтронов, и протонов. Он оказался нестабильным, несмотря на предсказанные для него магические свойства, и моментально распадался на четыре нейтрона и кислород 24O. По мнению авторов статьи в Nature, эти результаты указывают на сложную структуру нейтронной оболочки 28O с близкими по энергии возбужденными состояниями. Стабильность изотопов физики описывают разными теоретическими моделями. В частности, некоторые из них предсказывают высокую стабильность изотопов с определенным — магическим — числом протонов и нейтронов. Для протонов магическими являются числа Z = 2, 8, 20, 50, 82, 114, 126, а для нейтронов — числа N = 2, 8, 20, 28, 50, 82, 126. В атомах с такими числами нейтронные и протонные оболочки ядра полностью заполнены, а основное и возбужденные состояния сильно отличаются по энергии — это приводит к повышенной стабильности ядра. Особенно устойчивыми являются дважды магические ядра, в которых одновременно заполнены и протонная, и нейтронная оболочки — например, самый распространенный изотоп кислорода 16O. Для кислорода также известны более тяжелые изотопы с большим количеством нейтронов. Все они, начиная с 19O и заканчивая 26O, неустойчивы. При этом, согласно теоретическим представлениям, дважды магическое ядро 28O может быть устойчивым, хотя оно и содержит очень большое количество нейтронов. Тем не менее получить этот изотоп до сих пор не получалось. Впервые синтезировать кислород 28O удалось физикам под руководством Ёсуке Кондо (Yosuke Kondo) из Института физико-химических исследований RINKA в Японии. Для этого ученые облучали вращающуюся мишень из бериллия 9Be пучком ядер кальция 48Ca. При этом получались разные легкие ядра, из которых с помощью спектрометра физики отсеяли ядра фтора 29F и направили их на мишень из жидкого водорода. При этом из фтора образовались изотопы кислорода 27O и 28O. Далее, с помощью спектрометров физики смогли детектировать продукты их быстрого распада — нейтроны и кислород 24O. Рассчитанная учеными энергия распада составила 0,5 мегаэлектронвольта для 28O и 1,09 мегаэлектронвольта для 27O. Исходя из того, что энергия распада 27O и 25O больше, чем у 28O, физики сделали вывод, что изотоп 28O разложился ступенчато — сначала образовался изотоп 26O и два нейтрона, а затем 26O превратился в 24O и еще два нейтрона. Далее, физики провели расчеты нуклонной структуры 28O на основе теории χEFT (chiral effective field theory) и метода связанных кластеров (coupled-cluster method). Расчеты показали, что нестабильность ядра 28O связана с нестандартным расположением его нейтронных оболочек, которое приводит к заселению возбужденных состояний ядра с низкой энергией (intruder states). В результате физики впервые получили изотоп кислорода 28O и провели теоретические расчеты, объясняющие его нестабильность нестандартной структурой нейтронных оболочек. Тем не менее, прямые доказательства немагичности нейтронной структуры 28O еще предстоит найти. Ранее мы рассказывали о том, как физики получили самый тяжелый изотоп кальция.