Реализуемость этого сценария подтвердило численное моделирование
С помощью численных методов планетологи промоделировали динамику столкновения ранней Земли с протопланетой Тейя, результатом которого, согласно распространенной точке зрения, стало образование Луны. Как показало моделирование, значительная часть мантийного материала Тейи после столкновения должна была опуститься в нижний слой земной мантии. Здесь остатки протопланеты образовали крупные структуры с повышенной плотностью и низкой скоростью сдвиговых волн. Вопрос о происхождении этих областей до настоящего времени оставался спорным, и полученные учеными результаты могут помочь в его прояснении. Не исключено также, что многочисленные масштабные столкновения в ранней Солнечной системе привели к появлению подобных структур в мантии других планет, отмечают исследователи в статье, опубликованной в Nature.
Сейсмотомографические исследования показали, что в нижней мантии Земли, на границе с ядром, существуют протяженные (несколько тысяч километров в длину и до тысячи километров по вертикали) структуры, в которых поперечные (сдвиговые) сейсмические волны распространяются медленнее, чем в окружающем веществе. Они получили название суперплюмов, или крупных областей с низкой скоростью сдвига (LLSVP ― Large low-shear-velocity provinces). Ученые предположили, что LLSVP, в которых сосредоточено до шести процентов массы Земли, связаны с подъемом разогретого мантийного вещества. Однако в дальнейшем у этих областей были выявлены резкие границы и обнаружена повышенная плотность, что усложняет вопрос о происхождении и, возможно, указывает на различие химического состава LLSVP и вмещающей мантии.
Существует несколько версий появления крупных областей с низкой скоростью сдвига. Согласно первой, они представляют собой следы дифференциации вещества ранней Земли. Другая гипотеза связывает эти структуры с глобальной тектоникой и интерпретирует их как скопления остатков погруженных океанических плит. Наконец, еще одна версия объясняет происхождение LLSVP проникновением в нижнюю мантию фрагментов гипотетической протопланеты Тейя, столкновение с которой Земля пережила вскоре после своего формирования, около 4,5 миллиарда лет назад. Эта гипотеза согласуется с данными о геохимическом сходстве происходящих из глубокой мантии базальтов океанических островов с лунными морскими базальтами. Однако реализация такого сценария требует соблюдения ряда физических и химических условий.
Чтобы проверить, отвечает ли гипотеза импактного источника LLSVP гидродинамическим и термохимическим критериям, Юань Цянь (Qian Yuan) из Университета штата Аризона совместно с американскими, британскими и китайскими коллегами провел численное моделирование процессов, вызванных столкновением. С помощью бессеточных (1, 2) методов исследователи описали поведение систем, содержащих как минимум на порядок больше условных частиц, чем в предшествующих моделях. Основой для моделирования послужили уточненные уравнения состояния, включающие экспериментальные ограничения на свойства форстерита Mg2SiO4 ― минерала из группы оливина, распространенного компонента ультраосновных магматических пород.
Включенная в расчеты гипотетическая масса ранней Земли достигала 90 процентов современной, а масса Тейи ― 12 процентов. Предполагалось, что угол падения Тейи составлял около 45 градусов. По результатам моделирования, уже примерно через 20 часов после такого столкновения земная мантия приобрела двухслойную структуру с границей на глубине 1300–1400 километров относительно современного радиуса Земли. В верхнем слое преобладали расплав и газы, а в нижнем ― твердое вещество. Около 0,01 массы Земли в этом нижнем слое приходилось на остатки мантии Тейи, и до 30 процентов их оставались в твердом состоянии и были плотно сгруппированы. Сгустки расплавленного мантийного вещества Тейи в верхнем слое также могли достаточно быстро (за время порядка тысячи лет для капли 50-километрового диаметра) кристаллизоваться и утонуть.
В большинстве сценариев импактного формирования Луны она преимущественно состоит из материала Тейи. Между тем, судя по составу лунных морских базальтов, мантия Луны обогащена оксидом железа (II) FeO: его массовая доля превышает десять процентов. Поэтому мантия Тейи также должна была содержать много FeO и, следовательно, была плотнее земной. Юань и его коллеги построили несколько моделей динамики фрагментов Тейи в мантии Земли, исходя из значений массовой концентрации в них FeO от 13 до 17 процентов. Такие расплавленные фрагменты превышали плотность вмещающего материала на 1,25—5процентов. Во всех случаях, за исключением минимальных значений плотности и размеров, они образовали под действием медленной мантийной конвекции протяженные скопления, подобные LLSVP. Результаты расчета скорости сдвиговых сейсмических волн в этих модельных образованиях согласуются с данными наблюдений: на один—пять процентов ниже, чем в окружающей мантии.
Общая расчетная масса остатков Тейи в крупных областях с низкой скоростью сдвига составляет от 1,4 до 2,6 процента массы Земли. Авторы исследования не исключают, что современные LLSVP могут представлять собой комбинацию этих реликтов и фрагментов погруженной океанической коры. Однако при этом вещество Тейи не перемешалось полностью с другими компонентами: об этом говорят изотопные аномалии в базальтах океанических островов, источники которых, по-видимому, располагаются в нижней мантии. Юань с коллегами указывают также, что на заключительной стадии формирования планет масштабные столкновения были распространенным явлением в молодой Солнечной системе, поэтому аналогичные структуры могут сохраниться и в мантии других планет.
Особенно отличились мхи в условиях полузасушливого климата
Участки Великой Китайской стены, обросшие мхами и цианобактериями, оказались менее подвержены водной и ветровой эрозии. Такие биокорки снижали пористость и влагоемкость на величину до 48 процентов, повышали прочность на сжатие на 124 процента, а агрегатную стабильность — на 178 процентов. Наиболее эффективную защиту обеспечивали мхи Pottiaceae в условиях полузасушливого климата. Такие выводы содержит исследование, опубликованное в журнале Science Advances.