Для создания электрогенетического интерфейса использовали человеческие белки
Швейцарские исследователи разработали систему для искусственного управления экспрессией генов с помощью электрогенетического интерфейса, приводимого в действие постоянным током. В эксперименте с его помощью удалось контролируемо синтезировать инсулин пересаженными человеческими клетками в организме крысы, больной сахарным диабетом. Отчет о работе опубликован в журнале Nature Metabolism.
Средства современной синтетической биологии позволяют создавать сложные генетические контуры управления клеткой, которые могут выполнять функции осцилляторов, таймеров, модулей памяти, линейных пропускателей, реле и сумматоров. В экспериментах они позволяли контролировать модели различных медицинских состояний, включая рак, бактериальные инфекции, хроническую боль и сахарный диабет. Как правило, такие контуры содержат генетический выключатель, который реагирует на низкомолекулярные соединения, но их применение ограничивают биодоступность, фармакодинамика и побочные эффекты. Поэтому в последнее время различные научные группы испытывают физические триггеры, реагирующие на свет, тепло, магнитные поля и радиоволны, однако их использование также ограничено биодоступностью, использованием нефизиологических кофакторов и возможной цитотоксичностью.
Чтобы преодолеть эти ограничения, сотрудники базельского Научно-инженерного отделения биосистем (D-BSSE) Высшей технической школы Цюриха (ETH Zurich) под руководством Мартина Фуссенеггера (Martin Fussenegger) выбрали в качестве управляющего воздействия электрический ток. Низковольтный постоянный ток, подаваемый по электродам, быстро генерирует в тканях свободные электроны и радикалы, приводящие к образованию активных форм кислорода в низких, не цитотоксических концентрациях.
Авторы работы взяли за основу человеческий Kelch-подобный ECH-связанный белок 1 (KEAP1), модулирующий иммунный противоопухолевый ответ. В обычных условиях он секвестрирует фактор транскрипции NRF2 и направляет его на разрушение протеасомами. При повышении концентрации активных форм кислорода он высвобождает NRF2, который перемещается в ядро клетки и связывается с элементами антиоксидантного ответа (ARE). Кратковременного действия тока от бытового элемента питания оказалось недостаточно для активации KEAP1/NRF2, однако их эктопическая постоянная экспрессия давала достаточный ответ.
Исследователи ввели в клетки человеческих эмбриональных почечных клеток (HEK293) на вирусных векторах гены KEAP1, NRF2 и репортерного конструкта, кодирующего модельный гликопротеин SEAP (человеческую плацентарную секреторную щелочную фосфатазу) и управляющий ее секрецией синтетический промотор, содержащий оператор ARE. Полученная система, названная DART (DC-actuated regulation technology, технология регуляции с постоянным током в качестве актуатора), надежно вырабатывала искомый белок под действием тока из электродов в питательной среде, не вызывая других изменений в транскриптоме и цитотоксичности. Экспериментальным путем было показано, что оптимально 10-секундное воздействие тока напряжением 4,5 вольта от трех бытовых батареек АА или ААА.
В качестве подтверждения концепции авторы работы ввели в клеточную линию, полученную из человеческих мезенхимальных стволовых клеток конструкт DART, вырабатывающий инсулин. Монослой таких клеток в гелевой капсуле поместили под кожу спины мышей, страдавших сахарным диабетом 1 типа. Их стимуляцию проводили током от трех батареек АА с помощью стандартных одобренных ВОЗ и FDA акупунктурных электродов ежедневно в течение 10 секунд. На второй день уровень глюкозы в крови животных пришел в норму и оставался на этом уровне в течение четырех недель эксперимента. Метаболические показатели при этом можно было регулировать, изменяя напряжение тока, продолжительность стимуляции и частоту сеансов.
Исследователи рассчитывают, что DART откроет возможность для создания носимых электронных устройств для прямого управления метаболическими вмешательствами. По их мнению, электрогенетические интерфейсы представляют собой недостающее звено на пути к полной совместимости и интероперабельности электронных и генетических систем.
В 2017 году американским биотехнологам удалось применить электрический ток для управления генами кишечной палочки (Escherichia coli). Для этого они использовали белок SoxR, который помогает бактерии справляться с окислительным стрессом.
Клетка, активирующаяся понятием «Шрек», реагировала и на связанное с ним местоимение «он»
Нейробиологи обнаружили, что в человеческом гиппокампе есть концептуальные нейроны, подобные корковым, которые реагируют на определенные понятия сильнее, чем на все другие. Эксперименты с пациентами с электродами в гиппокампе показали, что концептуальные нейроны также избирательно реагируют на местоимения, связанные с этими понятиями. Статья опубликована в Science.