Они напечатали модели мозговой аневризмы и сердечного клапана
Американские инженеры разработали обратно-эмульсионную подложку для 3D-печати сложных структур из стандартных типов силикона. Она обеспечивает детализацию до восьми микрометров без потери устойчивости и эластичности материала. В ходе испытаний с помощью новой методики напечатали модели аневризмы мозговых сосудов и аортального клапана сердца, говорится в статье, опубликованной в журнале Science.
Силиконовые эластомеры устойчивы к износу, высоким температурам, химикатам, озону, влаге и ультрафиолету, поэтому их применяют в электронике, потребительских продуктах и медицинских устройствах — встроенных датчиках, гибких платах, мягких роботах. Изделия из силикона создают путем формовки, мягкой литографии и 3D-печати. Последняя сильно ограничена в возможностях из-за большой разницы в эластичности и поверхностных свойствах неполимеризованного жидкого и уже затвердевшего силикона.
Эти ограничения пытаются обойти, погружая заготовку в поддерживающий материал, который обтекает сопло 3D-принтера и стабилизирует чернила. Однако из-за натяжения на границе раздела они все равно часто деформируются и рвутся перед застыванием.
Чтобы решить эту проблему, сотрудники Университета Флориды под руководством Томаса Анджелини (Thomas Angelini) экспериментировали с обратными эмульсиями, в которых дисперсионной средой служит силиконовое масло, а дисперсной фазой — микрокапли воды. Изменяя объем водной фракции и средний диаметр капель, исследователи остановились на эмульсии с пределом упругости (σy) равным 9 паскалям и эластическим модулем сдвига (G′) в 320 паскалей. Ее реологические свойства позволяют плавно (число Рейнольдса от 10-6 до 10-2) обтекать раздвижное сопло принтера, при этом она достаточно плотная, чтобы удерживать сложные напечатанные структуры из полидиметилсилоксана (ПДМС, простейший силикон).
Эмульсия с чистой водой непрозрачна, что затрудняет визуализацию процесса печати, поэтому авторы работы добавили в воду глицерин в концентрации, обеспечивающей полное совпадение коэффициентов преломления фаз. Методику назвали AMULIT (additive manufacturing at ultralow interfacial tension, аддитивное производство при ультранизком межповерхностном натяжении).
В ходе экспериментов исследователи убедились, что в полностью водянистой подложке (микрочастицы гидрогеля, разбухшие в воде) струя силикона 100-микрометровой толщины образует ровные капли, в органической — рвется, а в AMULIT — застывает ровно. Исследование напечатанных флуоресцентным силиконом образцов под конфокальным микроскопом показало, что при высоком межповерхностном натяжении в водянистой подложке поверхность застывших чернил абсолютно гладкая, а в AMULIT — шероховатая, что препятствует их схлопыванию в капли под действием поверхностного натяжения.
В качестве демонстрации возможностей методики ее авторы напечатали из коммерческих термоотверждаемых силиконовых чернил модель аневризмы мозга пациента по трехмерной ангиограмме, полученной с помощью компьютерной томографии. Разветвленная система полых сосудов со средней толщиной стенки в 400 микрометров хорошо совпадала с оригиналом: 68 процентов напечатанных поверхностей находились в пределах 500 микрометров от заданного положения, 95 процентов — в пределах миллиметра.
После этого из отверждаемого ультрафиолетом силикона напечатали действующую модель аортального клапана сердца в натуральную величину. При печати некоторые детали достигали диаметра 150 микрометров, конечная толщина стенки готового изделия составила примерно 250 микрометров. При этом подключенный к насосу клапан выдерживал цикличный разнонаправленный ток жидкости, симулирующий систолу и диастолу сердца.
Дополнительные эксперименты показали, что AMULIT позволяет печатать стабильные структуры диаметром от восьми микрометров из коммерчески доступных силиконов. Продолговатые тестовые образцы, напечатанные латерально и продольно значимо не отличались друг от друга и имели эластический модуль в 28 килопаскалей. Они сохраняли свойства до растяжения на 1000 процентов и выдерживали 10 тысяч циклов растяжения на ±10 процентов, причем усталостное разрушение у них было меньше, чем у схожих отлитых образцов (снижение модуля эластичности на 14 против 18 процентов).
Авторы работы подчеркнули, что AMULIT доступна к использованию в имеющемся виде и имеет широкий спектр потенциальных применений уже в краткосрочной перспективе.
В 2020 году американские исследователи представили метод 3D-печати микроканалов без поддерживающих структур. Тогда же немецкие инженеры продемонстрировали принтер для непрерывной объемной печати с отдельными внутренними включениями, в котором используются два источника излучения с разными длинами волн. Тремя годами ранее американцы предложили добавлять в силиконовые чернила полимерные пузырьки с газом, чтобы печатать предметы с памятью формы.
Американские инженеры научились печатать на 3D-принтере сетчатые структуры, которые по своему строению и свойствам похожи на ткань. Они получаются при неравномерном выходе материала из экструдера принтера. Метод позволяет создавать «ткань», структурированную на разных масштабах, предназначенную для разных применений, рассказывают авторы статьи, представленной на конференции UIST 2020.