В основе этого эффекта лежит квантовый аномальный эффект Холла
Физики из Австрии и США провели эксперимент по квантованию фарадеевского вращения в тонких пленках. В основе этого явления лежит квантовый аномальный эффект Холла, который связан с намагниченностью вещества и не требует больших магнитных полей. Авторы показали, что квантовый скачок угла поляризации в точности равен постоянной тонкой структуры. Исследование опубликовано в Applied Physics Letters.
Постоянная тонкой структуры возникла в физике благодаря увеличению точности, с которой экспериментаторы научились определять энергии атомных уровней. Ее ввел Арнольд Зоммерфельд в 1916 году как параметр, определяющий то, насколько сильно расщепляются уровни в тонкой структуре. Оказалось, что эта константа, безразмерная и равная примерно 1/137, имеет куда более фундаментальное значение.
Помимо спектроскопического способа определения постоянной тонкой структуры физики используют астрофизические данные, причем второй способ оказывается точнее. В обоих случаях, однако, речь идет о косвенном извлечении: нужная константа получается как результат математической комбинации измеренных параметров той или иной размерности.
И все же экспериментаторы нашли прямой доступ к постоянной тонкой структуры. Он основан на том, что эта величина может быть получена в виде комбинации кванта холловской проводимости и скорости света. На практике это означает, что при некоторых условиях можно наблюдать квантованный эффект Фарадея. Другими словами, поворот плоскости поляризации может происходить лишь на целое число, умноженное на угол, в точности равный постоянной тонкой структуры. Проблема в том, что без дополнительных усилий квантовый эффект Холла возникает только при слишком низких частотах, а сильное магнитное поле, нужное, чтобы его увидеть, размывает квантование.
Чтобы обойтись без сильных магнитных полей, Алексей Шуваев (Alexey Shuvaev) из Венского технологического университета и его коллеги из Австрии и США обратились к аномальному эффекту Холла. В отличие от своей нормальной версии, аномальный эффект возникает в материалах, которые способны поддерживать достаточно большую намагниченность в отсутствие магнитного поля, и связан со спиновыми свойствам носителей зарядов. Его квантовая версия впервые была обнаружена лишь в 2013 году.
Физики проводили опыты с монокристаллами (Cr0,12Bi0,26Sb0,62)2Te3, выращенными методом молекулярно лучевой эпитаксии на подложке арсенида галлия. Образцы имели форму, близкую к шестиугольной с характерным размером около 10 миллиметров и толщиной 6 нанометров. К углам авторы присоединяли индиевые контакты для измерения холловского сопротивления.
Суть опыта заключалась в прохождении через образец терагерцового излучения и измерения пропускания в схеме параллельных и скрещенных поляризаторов. В этом случае угол фарадеевского вращения определяется через арктангенс этих двух величин. Поскольку каждая пленка представляет собой идеальную пластинку, в некотором диапазоне частот пропускание демонстрирует характерную интерференцию Фабри — Перо. Основной результат авторы получили на частоте одного из максимумов — 188 гигагерцах.
Ученые строили зависимость обеих пропусканий и холловского сопротивления от приложенного магнитного поля при различных температурах. Сильнее всего эффект квантования проявил себя при гелиевых температурах (а именно при 1,8 кельвин). Так, в отсутствие магнитного поля вращение поляризации равнялось нулю, но по достижению нескольких сотен миллитесл оно достигало значения, примерно равного 1/137 радиан. При этом возникал характерный гистерезис этого угла при изменении направления магнитного поля, связанный с гистерезисом намагниченности.
Примечательно, что скачок холловского сопротивления не превышал шести килоом при самых холодных условиях, что все еще меньше, чем фундаментальный квант сопротивления, равный 26 килоом. Это свидетельствует о различии в механизмах оптического и статического эффектов Холла. В то время как последний основан на одномерных проводящих каналах на краях образца, терагерцовое излучение не задействует этот механизм, поскольку физики фокусировали его в пятно диаметром пять миллиметров в середине образца.
Конечно, предложенный метод не может конкурировать по точности с астрономическими и даже лабораторными измерениями, поскольку здесь относительные погрешности составляют порядка одной сотой. Тем не менее, опыт важен для понимания природы эффекта Холла в оптическом режиме. Вместе с тем в твердых телах электромагнитное взаимодействие может сильно модифицироваться. Мы уже рассказывали, как в спиновых льдах постоянная тонкой структуры может эффективно вырасти в десять раз.
Точность эксперимента в два с половиной раза превзошла предыдущие
Физики подтвердили нулевое значение дипольного момента электрона с точностью в два с половиной раза выше предыдущей. Для этого ученые поместили ионы гафния в сверхсильное электрическое поле и измерили разность энергий их различных квантовых состояний. Исследование позволит лучше ограничить константы физики за пределами Стандартной модели, пишут ученые в Science. Электрический дипольный момент электрона — мера внутренней асимметрии распределения его заряда. Согласно предсказаниям Стандартной модели, его значение хоть и не равно нулю, но чрезвычайно мало: не более 10-38 заряда электрона на сантиметр. Поэтому в пределах доступной сейчас чувствительности эксперимента (10-30 заряда электрона на сантиметр — это выше искомого значения на восемь порядков) дипольный момент считают нулевым. Вклад в теоретическое значение вносит нарушение CP-симметрии (сочетание зарядовой симметрии и симметрии четности), которое возникает из-за слабого взимодействия между частицами. Это нарушение уже является частью Стандартной модели. Однако дополнительные нарушения, значения которых превышают текущие теоретические значения, смогли бы объяснить дисбаланс материи и антиматерии во Вселенной (подробнее об этом читайте в нашем материале «Вселенная вместо ничто»). Такие нарушения в теории можно ввести лишь при расширении Стандартной модели частицами Новой физики. Кандидатов на роль нарушителей довольно много: например, портал Хиггса, хамелеоновские частицы и B−L бозоны нарушают CP-симметрию при высоких энергиях. Подобные измерения уже проводились, однако в рамках заданной точности эксперимента (10-29) значение оказалось равным нулю, и, следовательно, наличие новых частиц эксперимент не подтвердил. Повысить точность довольно сложно — нужны сверхсильные электрические поля (больше 20 гигавольт на сантиметр). Чтобы проверить, не отличается ли все же дипольный момент электрона от нуля, группа ученых из Колорадского университета под руководством Тани Русси (Tanya S. Roussy) создала в ионной ловушке поле с напряженностью 23 гигавольта на сантиметр и поместила в нее ионы гафния HfF+. Благодаря этому физики повысили точность измерения дипольного момента электрона на порядок. Во внешнем электрическом поле ионы гафния HfF+ выстраиваются вдоль силовых линий, создавая эффективное электрическое поле, которое воздействует на спин электрона. Ученые фиксировали разность энергий между двумя дублетными состояниями иона, которая чувствительна к наличию дипольного момента. У одного состояния внутримолекулярная ось (ось, перпендикулярная плоскости движения пары электронов дублетного состояния) параллельна приложенному полю, у другого — антипараллельна. Значение разности получали измерением частоты перехода из одного квантового состояния в другое с помощью спектроскопии Рэмси, основанной на явлении магнитного резонанса. Cравнив измеренную разность энергий с теоретической (по предсказаниям Стандартной модели), ученые определили значение дипольного момента. Оно оказалось равным нулю с погрешностью менее 4,1 × 10-30 заряда электрона на сантиметр. Благодаря повышению точности исследователям удалось получить новые оценки для расширений Стандартной модели, объясняющих дисбаланс материи и антиматерии. Эффективная масса их бозонов должна быть более 40 терраэлектронвольт. Это на порядок больше максимальной массы частиц, детектируемых Большим адронным коллайдером. А значит, при дальнейшем увеличении точности метода можно обнаружить частицы, невидимые в экспериментах физики высоких энергий. Ученые продолжают искать следы новой физики в экспериментах по определению квантовых характеристик элементарных частиц. Физики уже обнаружили отклонения от Стандартной модели в измерениях магнитного момента мюона, а недавно улучшили оценку магнитного момента электрона.