И продемонстрировали высокую точность двухкубитных операций на нем
Российским ученым удалось создать четырехкубитный квантовый вычислитель и продемонстрировать на нем точность двухкубитных операций более 97 процентов. Физически процессор представляет собой сверхпроводниковую интегральную микросхему, спроектированную учеными из МФТИ и НИТУ МИСиС, говорится в пресс-релизе, поступившем в редакцию N + 1.
Почти две недели назад мы писали о том, что специалисты компании IBM разработали и изготовили чип с 433 сверхпроводниковыми кубитами, но не продемонстрировали на нем никаких вычислений. Несмотря на рекордное число кубитов, с физической точки зрения есть еще одна важная характеристика вычислителя — возможность реализовывать квантовые операции между кубитами. Это отдельная и не менее сложная задача.
Физики из МФТИ И НИТУ МИСиС тоже занимались разработкой топологии схем для чипа со сверхпроводниковыми кубитами. В отличие от коллег из IBM, они сосредоточились не на одной задаче — масштабировании или создании идеального квантового вентиля, а решали сразу обе, чтобы изготовить рабочее устройство, хоть и не с большим числом кубитов.
Авторская микросхема состоит из пяти зарядовых кубитов, один из которых в эксперименте не использовался. Каждый джозефсоновский переход шунтирован конденсатором большой емкости — это позволяет сделать кубит более учтойчивым к зарядовым шумам и увеличить его время жизни. Связь кубитов между собой позволяет им обмениваться энергией и управляемо изменять друг у друга фазу в состояниии суперпозиции. Первый тип взаимодействия позволяет реализовывать алгоритмы с квантовым машинным обучением, а второй — стандартные квантовые алгоритмы.
Контролируемое взаимодействие между соседними кубитами описывается двухкубитными операциями, в которых в зависимости от состояния одного из кубитов (управляющего) меняется или не меняется состояние второго (управляемого). Авторы реализовывали вентиль CZ (controlled-Z gate) — вентиль, в котором меняется фаза управляемого кубита. Математически квантовые вентили можно описывать с помощью матриц, каждому преобразованию соотвествует своя матрица, которая переводит начальное состояние-вектор в конечное (конечный вектор состояния рассчитывается как произведение матрицы преобразования на исходный вектор). Понять насколько хорошо реализован вентиль можно сравнив его матрицу с теоретической. Авторам удалось добиться точности в 97 процентов для вентиля CZ.
Чтобы реализовать двухкубитный вентиль с хорошей точностью, необходимо так же точно его откалибровать. В работе физики тестировали перекрестное взаимодействие кубитов с помощью подачи на процессор псевдослучаных последовательностей операций и проводили квантовую томографию процесса — зная входное и выходное состояния кубитов восстанавливали матрицу процесса.
Важный параметр для квантового процессора, подверженного декогеренции — время проведения одной логической операции. В эксперименте оно оказалось равным 0, 025 микросекунд. Это значит, что за время жизни квантового состояния процесса можно провести 3200 операций.
Точность двухкубитного вентиля на устройстве составила около 96 процентов
Физики реализовали квантовое вычислительное устройство на сверхпроводниках с помощью модульного принципа, разместив на плоской подложке четыре отдельных узла, конфигурацию которых можно менять произвольным образом. Ученые добились средней степени совпадения (fidelity) результатов работы двухкубитных вентилей в 96 процентов и качества приготовления запутанного двухкубитного состояния в 98,74 процента. Новый метод создания квантовых устройств будет полезен для эффективного масштабирования систем неограниченного размера. Результаты исследования опубликованы в Physical Review X.