Т-лимфоциты могут не только наращивать свои теломеры с помощью теломеразы, но и принимать донорские теломеры от других клеток. Иммунологи проследили за тем, как антигенпрезентирующие клетки откусывают частички своих теломер, пакуют их в мембранные пузырьки и выбрасывают из клетки — а Т-лимфоциты ловят пузырьки и пристраивают теломеры на концы своих хромосом. Ученые предполагают, что этот механизм позволяет регулировать старение Т-лимфоцитов: те из них, кто получил «вливание» теломер, становятся долгоживущими клетками памяти. Работа опубликована в журнале Nature Cell Biology.
Укорочение теломер — «бессмысленных» нашлепок на концах хромосом — считается одной из причин старения организмов в целом и клеток в частности. Причин для такого укорочения есть множество, но самая очевидная — деление клеток: при каждом удвоении ДНК с конца хромосомы пропадает небольшой кусок. А когда теломеры достигают критической длины, клетка не только перестает делиться, но и становится сенесцентной — в таком состоянии она хуже работает и выделяет провоспалительные белки.
Не все клетки за время жизни человека успевают выбрать свой лимит теломер, но для некоторых типов эта проблема стоит остро. Например, для лимфоцитов: после того, как T- или B-клетка узнает антиген, ей нужно много раз поделиться, чтобы создать клон клеток, которые могут бороться с чужеродным веществом в организме. А после этого оставаться в рабочем состоянии, чтобы не пропустить свой антиген при следующей встрече.
Можно было бы нарастить теломеры с помощью специального фермента — теломеразы — как иногда делают клетки взрослого организма, в том числе и Т-лимфоциты. Но ученые уже выяснили, что этого недостаточно, чтобы Т-клетки продолжали делиться и не становились сенесцентными. Поэтому Алессио Ланна (Alessio Lanna) и группа исследователей из Научного института восстановления и лечения (Istituto di Ricovero e Cura a Carattere Scientifico) взялись выяснить, как лимфоцитам удается сохранять клеточную молодость.
Ученые измерили длину теломер у Т-клеток и у антигенпрезентирующих клеток — это иммунные клетки, которые приносят антигены из тканей и активируют Т-лимфоциты. Оказалось, что длина отличается, если ее измерять до и после контакта этих клеток. После контакта у лимфоцитов теломеры становятся длиннее. Этот эффект воспроизвелся и у Т-лимфоцитов с выключенной теломеразой — а значит, удлинение происходит по какому-то другому механизму.
Тогда исследователи заподозрили, что антигенпрезентирующие клетки делятся с Т-лимфоцитами своими теломерами. Они пометили их теломеры флуоресцентной краской и увидели, что те выходят из ядра и скапливаются в месте контакта с Т-клеткой (это место называют иммунным синапсом). А затем пузырьки с ДНК отщепляются от антигенпрезентирующей клетки и оказываются в среде. При этом в контрольных экспериментах, где оба типа клеток не контактировали друг с другом, никаких пузырьков с ДНК ученые не обнаружили.
Затем ученые решили проверить, правда ли Т-клетки принимают донорские теломеры. Для этого они взяли отдельную культуру антигенпрезентирующих клеток и пометили их ДНК с помощью краски, которая светится в ультрафиолете, а потом обработали их антибиотиком иономицином — он вызывает высвобождение пузырьков из клеток даже вне контакта с Т-лимфоцитами. Дальше эти пузырьки налили на культуру Т-клеток — и оказалось, что около 8 процентов из делящихся лимфоцитов светятся в ультрафиолете, то есть поглотили пузырьки с меченой ДНК.
После этого авторы работы взялись выяснять, какие механизмы помогают клеткам совершить такой обмен. Внутри пузырьков в антигенпрезентирующих клетках они нашли белок TZAP. Эта молекула известна тем, что связывается с концами хромосом, — а перед выделением пузырьков ее экспрессия в клетках выросла. То есть, судя по всему, TZAP как-то помогает отрезать кусочки теломер. Но в норме TZAP не может связаться с теломерами, потому что они заблокированы белками шелтеринами. А вот их экспрессия перед выделением пузырьков оказалась ниже обычной (вне зависимости от того, чем вызвано выделение — контактом с Т-клеткой или иономицином). Возможно, именно поэтому TZAP смог попасть в теломеры.
Кроме того, внутри пузырьков нашелся белок Rad51 — важный участник процесса рекомбинации, то есть обмена участками хромосом. Известно, что опухолевые клетки умеют пользоваться рекомбинацией для наращивания теломер (этот механизм называют альтернативным удлинением теломер): на время как бы заимствуют одну цепь ДНК с соседней хромосомы, чтобы по ее шаблону достроить свою теломеру. И Rad51 отвечает как раз за это заимствование цепи. Это может означать, что альтернативное удлинение бывает и в иммунных клетках — а антигенпрезентирующие клетки помогают им его запустить, добавляя Rad51 в пузырьки.
Чтобы проверить эту идею, исследователи заблокировали экспрессию Rad51 в антигенпрезентирующих клетках, и те начали производить пузырьки с теломерами без этого белка. Т-клетки по-прежнему поглощали такие пузырьки, но внутри их клеток собственные и донорские теломеры уже не находились рядом — то есть процесс альтернативного удлинения явно шел хуже. И теломеры у них росли медленнее, чем обычно после контакта — уже не на 3 тысячи пар оснований, а менее, чем на 2.
Наконец, авторы работы попробовали разобраться с тем, как донорство теломер влияет на судьбу иммунных клеток. Сначала они измерили, как Т-лимфоциты делятся после получения пузырьков — и оказалось, что они успевают образовать клон большего размера, чем клетки, которые не получили пузырьков совсем или получили неполноценные. Таким образом, они активнее делятся (то есть меньше стареют) — а значит, могут принести дополнительную пользу иммунной системе.
Чтобы это проверить, исследователи переключились на эксперименты с мышами. Они взяли у них антигенпрезентирующие клетки и «познакомили» их с яичным альбумином in vitro. После этого клетки ввели мышам, а заодно ввели им Т-лимфоциты, специфичные к яичному альбумину (и специально помеченные, чтобы их можно было найти в крови). Через 18 часов ученые проверили, что происходит в лимфоузлах у этих мышей, и подсчитали, что примерно половина Т-клеток получила донорские теломеры. Еще через 18 часов мышей «вакцинировали», то есть ввели им дозу яичного альбумина — а после этого заметили, что Т-лимфоциты с новыми теломерами делятся интенсивнее, чем те, кому пузырьков не досталось.
Таким образом, авторы работы не только обнаружили, что клетки в организме человека умеют обмениваться теломерами, но и предположили, зачем это может быть нужно. Они заключили, что с помощью этого механизма антигенпрезентирующие клетки удерживают Т-клетки от старения. Но при этом помощь, вероятно, достается не любым Т-лимфоцитам, а только совсем молодым или клеткам памяти — то есть тем, кому было бы полезно много раз поделиться, чтобы создать рабочий клон или крепкую иммунную память. А вот могут ли клетки памяти образовываться без вливания донорских теломер и получаются ли они при этом такими же долгоживущими — это еще предстоит проверить.
Тем временем удлинять теломеры в других клетках люди пока только учатся. И хотя мы рассказывали о том, как некоторые фирмы уже продают генную терапию на основе теломеразы, результатов ее применения на людях пока нет. Зато есть результаты на мышах — им, как недавно выяснилось, геннотерапевтический препарат можно распылять прямо в нос.
Полина Лосева
Она оказалась эффективнее обычных панорамных мониторов
Американские исследователи разработали иммерсивную систему виртуальной реальности для мышей. Она должна помочь в проведении нейробиологических и поведенческих исследований. Препринт работы доступен на ресурсе Research Square. VR-системы для лабораторных животных сделали возможными фундаментальные нейрофизиологические исследования сложных когнитивных функций. В таких исследованиях необходима фиксация головы для записи активности мозговых структур, которая невозможна, если животное бежит по лабиринту или выполняет другие активные задачи. Кроме того, VR позволяет симулировать невозможные в реальном мире условия, такие как телепортация или разобщение движений с визуальной картиной. Существующие системы обычно представляют собой панорамные экраны для проекторов или светодиодные дисплеи, расположенные в 10–30 сантиметрах от глаз мыши, чтобы оставаться в фокусе ее зрения. Такие установки сложны, громоздки и дорогостоящи, их сложно встроить во многие системы нейровизуализации. Кроме того, экспериментальное оборудование (например, камеры, объективы микроскопов, детекторы лизания) может заслонять часть экрана от животного, что уменьшает эффект погружения. Чтобы устранить эти недостатки, Мэттью Айзексон (Matthew Isaacson) с коллегами по Корнеллскому университету разработали бинокулярную VR-систему, которая подает изображения прямо на глаза мыши с двух круглых светодиодных дисплеев через линзы Френеля. Расстояние от 2,76-сантиметрового дисплея до 1,27-сантиметровой линзы составляет сантиметр, от линзы до глаза — 1,5 миллиметра; вся конструкция размещена в 3D-печатном корпусе, изолирующем глаза от внешней среды. Сферическое искажение дисплеев линзой обеспечивает почти постоянное угловое разрешение 1,57 пикселя на градус и частоту Найквиста 0,78 цикла на градус, что выше остроты мышиного зрения. Бинокулярное горизонтальное поле зрения составляет 230 градусов с примерно 25-градусным перекрытием правого и левого полей. Также разработан монокулярный вариант системы с полем зрения 140 градусов. Голова животного фиксирована, при этом оно может свободно передвигаться, вращая трекбол, который наряду с датчиком поискового лизания служит устройством ввода. Информацию от них обрабатывает компьютер Raspberry Pi с установленным игровым движком Godot, он соединен с мониторами по интерфейсу SPI и с диспенсером лакомства-вознаграждения — по USB. Устройство, получившее название MouseGoggles, способно генерировать VR-сцены с частотой 80 кадров в секунду и задержкой между вводом и выводом менее 130 миллисекунд. В качестве испытаний системы исследователи проводили монокулярную стимуляцию анестезированной мыши с фиксированной головой одновременно с двухфотонной визуализацией токов кальция (GCaMP6s) в ее зрительной коре. Дисплей производил на 99,3 процента меньше светового загрязнения, чем стандартный светодиодный монитор, что позволяло проводить флуоресцентную визуализацию без дополнительных фильтров или экранирования. Медианный радиус рецептивного поля составил 6,2 градуса; контраст по полунасыщенности — 31,2 процента; максимальный нейроответ наблюдался при пространственной частоте 0,042 цикла на градус. Бинокулярную систему успешно испытали в ходе записи электрических импульсов от CA1-нейронов гиппокампа. Для проверки формирования условных рефлексов с помощью VR-системы мышей в течение пяти дней тренировали в замкнутом линейном виртуальном пространстве, где им на некоторых участках давали лакомство. Рефлекс вырабатывался хорошо — подходя к заданным местам, животные начинали облизываться в предвкушении угощения, на остальных участках интенсивность поискового лизания была значительно снижена. Когда животным, впервые помещенных в MouseGoggles, демонстрировали внезапно появляющийся объект, большинство из них сразу демонстрировали реакцию испуга — быстро отдергивались или отпрыгивали с выгнутой спиной и поджатым хвостом. При использовании обычных мониторов этого не происходило, а значит, система обеспечивает более глубокое погружение в виртуальную реальность, заключили исследователи. https://www.youtube.com/watch?v=YFkAKO795Ro Мышь в MouseGoggles и реакция испуга на появляющийся объект Чтобы повысить доступность MouseGoggles, авторы использовали недорогие (общая стоимость менее 200 долларов США) и легкие для сборки неспециалистами компоненты. Описание, программное обеспечение и подробная документация выложены в открытый доступ. Ранее для более глубокого погружения мышей в виртуальную реальность разные команды разработчиков предлагали дополнить систему имитирующими стены пластинами, которые животное может ощущать вибриссами, или создавать специальные помещения с высокочувствительными камерами.