Физики порисовали по сегнетоэлектрику на нанометровом масштабе

Китайские физики разработали новый метод лазерной печати сегнетоэлектрических доменов в ниобате лития, который не только позволяет преодолеть дифракционный предел, но и создавать трехмерные структуры в толще образца. Новый метод основан на локальном нагреве образца, в котором за счет термоэлектрического эффекта образуется поле, разворачивающее поляризацию вещества. Ученые продемонстрировали работоспособность метода, сформировав разнообразные фигуры и шаблоны, как плоские, так и объемные. Исследование опубликовано в Nature.

Сегнетоэлектричеством называют способность материалов поддерживать спонтанную поляризацию в некотором диапазоне температур даже в отсутствии внешнего поля. Диэлектрическая проницаемость таких сред поддается настройке и обычно довольно велика, то есть сегнетоэлектричество — это, по сути, электрический аналог ферромагнетизма. Такие свойства делают сегнетоэлектрики крайне полезными для множества приложений оптики, акустики и электроники.

Примером такого материала можно назвать ниобат лития. Он хорош тем, что помимо сегнетоэлектричества демонстрирует нелинейные оптические свойства и высокий показатель преломления. Как и в остальных сегнетоэлектриках, упорядочивание диполей в ниобате лития происходит в пределах определенной области кристалла — домена. При миниатюризации устройств оптики или электроники инженерам требуется, чтобы размеры этих доменов принадлежали к наномасштабу. Однако существующие методы формирования доменов ограничены микронным масштабом. Кроме того, они позволяют работать только с двумерными материалами.

Группа китайских физиков под руководством Юна Чжана (Yong Zhang) из университета Нанджунга реализовали новый подход к печати сегнетоэлектрических доменов в ниобате лития с помощью лазера. В отличие от традиционных методов, основанных на наведении электрического поля световой волной и потому ограниченных дифракционным пределом, метод, предложенный авторами, опирается на нагрев образца с последующим термоэлектрическим эффектом. Таким способом им удалось печатать домены на нанометровом масштабе.

При фокусировке лазера в определенную точку материала свет может вызывать локальный нагрев, зависящий от интенсивности пучка. В ниобате лития это приводит к возникновению термоэлектрического поля, чей вектор напряженности направлен вдоль положительного градиента температуры, то есть в центр теплового пятна. Его модуль максимален в некоторой близости от центра, где поле может превышать порог, после которого становится возможен переворот поляризации.

Когда тепловое пятно возникает в области, в которой уже есть спонтанная поляризация, половина такого надпорового поля сонаправленно с ней, а половина — противонаправлено. Это приводит к тому, что движение лазерного пятна по образцу оставляет различный сред, в зависимости от того, в каком направлении относительно спонтанной поляризации оно движется. Таким способом физики реализовывали режим лазерного карандаша, то есть движения, которое «рисует» в образце область инвертированной поляризации, и лазерного ластика, который возвращает поляризацию обратно. Поскольку области надпороговой напряженности имеют эллиптическую форму, толщина рисуемой линии зависит от того, под каким углом к спонтанной поляризации движется пятно.

Таким способом физики нарисовали множество различных фигур и шаблонов: окружности, линейки, лучевые и параллельные решетки. В последнем случае у них получились нелинейные дифракционные решетки, которые позволяли генерировать вторую гармонику в первом дифракционном порядке. При этом комбинация карандаша и ластика позволила авторам сформировать домены толщиной до 30 нанометров, что существенно меньше дифракционного предела.

Наконец, ученые продемонстрировали, что, меняя глубину фокусировки лазерного луча, новый метод позволяет формировать трехмерные фигуры в толще образца. В качестве примера они изготовили трехмерную периодическую решетку из сегнетоэлектрических доменов.

Ранее мы писали, как перестройку доменов в сегнетоэлектрике увидели в реальном времени.

Марат Хамадеев

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.
Физики разобрались с танцем арахиса в пиве

Это поможет добывать руду и обрабатывать ядерные отходы

Европейские физики теоретически и экспериментально исследовали цикличные процессы всплытия и опускания на дно зерен арахиса в пиве, который называют «танец арахиса». Для этого они в течение двух с половиной часов снимали на камеру этот процесс в лаборатории. Анализируя эти результаты, ученые выяснили, что танец происходит из-за поверхностных свойств арахиса, на которых образование пузырьков предпочтительнее, чем на стенках стакана. Исследование опубликовано в Royal Society Open Science. В России распространен фокус, который показывают на вечеринках с шампанским. Для этого в полный бокал игристого напитка бросают изюминку, кусочек ананаса или дольку шоколада. Брошенное в жидкость тело сначала тонет, но затем всплывает под действием пузырьков газа, зародившихся на его краях. У поверхности пузырьки разрушаются и цикл повторяется. В аргентинских барах существует такая же традиция, только вместо шампанского там используют пиво, а вместо изюма — арахис. Там этот трюк получил название «танец арахиса». Несмотря на качественное понимание такого танца, физики плохо понимают его детали. Вместе с тем, такие процессы происходят не только на вечеринках или в барах, но и в природе: предполагается, что именно так плотный магнетит всплывает в магме. Похожим же образом горняки отделяют железо от руды. Разобраться в этом вопросе решили Луис Перейра (Luiz Pereira) из Университета Людвига Максимилиана и его коллеги из Англии, Германии и Франции. Для этого они провели экспериментальны с арахисом в пиве и подтвердили их результаты численными вычислениями. Физики наполняли резервуар размером 100 × 100 × 200 миллиметров одним литром лагера и опускали в него 13 обжаренных зерен арахиса Arachis hypogaea. Весь процесс они снимали на цифровую камеру. На начальном этапе все зерна плавали на поверхности из-за активного образования пузырей в перенасыщенном углекислом газом пиве. Примерно через 25-30 минут количество пузырьков уменьшалось и арахис начинал цикличное движение вверх и вниз под действием описанного выше механизма. Танец всех зерен прекратился примерно через 150 минут после начала эксперимента — количество газа, растворенного в пиве, опустилось ниже пороговой отметки. Для анализа результатов эксперимента авторы разбили задачу на три части: зарождение пузырьков, плавучесть и цикличность. Для этого им потребовалось знать капиллярные свойства системы, такие как плотность пива и газа, поверхностное натяжение, углы смачивания и так далее. Первое они рассчитали с помощью пивного онлайн калькулятора, второй — взяли из литературы, а для получения информации об углах ученым потребовалось провести дополнительные эксперименты по смачиванию пива стеклом и плоской частью арахиса. В результате физики смогли воспроизвести основные особенности поведения арахиса в пиве, которые они увидели в эксперименте. Так, они доказали, что арахис обладает поверхностью, на которой образование пузырей энергетически более выгодно, чем на стенках стакана. Если бы это было не так, танец арахиса был бы невозможен. Ученые отмечают, что арахис в пиве может служить модельной системой не только для задач геологии и добычи полезных ископаемых, но и в обработке ядерных отходов. Один литр пива — это не так много, когда речь идет о физическом эксперименте (впрочем, не только). То ли дело 30 литров! Именно столько потратили физики из Германии и Кореи, изучая стабильностью пивной пены при розливе «снизу-вверх».