Для низкотемпературных фазовых переходов в ферромагнетиках оказалось характерно разрушение доменной структуры. В статье в Nature физики пишут, что для теоретического описания динамики таких переходов необходимо учитывать не только микроскопическую, но и мезомасштабную симметрию. Это открытие указывает на возможность существования неклассических свойств в квантовых материалах.
Ферромагнитные материалы имеют два уровня структурного порядка: микроскопический и мезоскопический. На уровне атомов друг с другом взаимодействуют соседние спины, выстраиваясь преимущественно вдоль оси легкого намагничивания. На мезоскопическом уровне магнитные моменты появляются уже у доменов — областей размером в кубические миллиметры. Внутри каждого домена спины сонаправлены, а в соседних — суммарные магнитные моменты имеют разное направление, которое может отличаться от направления легкой оси. При фазовом переходе из ферромагнитного в парамагнитное состояние магнитные моменты разупорядочиваются, и оба порядка — и микроскопический, и мезоскопический — разрушаются.
В случае классических фазовых переходов, которые происходят из-за тепловых флуктуаций, ученые часто учитывают и разрушение доменов. В отличие от классических фазовых переходов, квантовые происходят из-за квантовых флуктуаций при температурах близких к абсолютному нулю. Несмотря на то, что оба класса фазовых переходов имеют общий флуктуационный характер и для их описания используются одни и те же параметры и уравнения статистической физики, квантовые ферромагнитные фазовые переходы до сих пор описывали без учета мезоструктуры материала.
Группа ученых под руководством Маттиаса Войты (Matthias Vojta) и Кристиана Пфляйдерера (Christian Pfleiderer) из Технического университета Мюнхена и Технического университета Дрездена впервые показала, что при рассмотрении квантовых фазовых переходов из ферромагнитного в парамагнитное состояние необходимо учитывать доменную структуру. Чтобы показать, как мезоструктура влияет на фазовый переход, авторы взяли смешанный фторид лития и гольмия LiHoF4, ферромагнитный ниже 1,63 кельвина. Физики вызывали фазовый переход, прикладывая поле, перпендикулярное легкой оси. Оно разрушало микроскопический порядок.
Параметром порядка, по которому авторы определяли фазовый переход, служила магнитная восприимчивость — коэффициент пропорциональности между внешним магнитным полем и намагниченностью образца. У ферромагнетиков она больше единицы, у парамагнетиков близка к нулю. Согласно классическим фазовым теориям, в частности теории среднего поля, восприимчивость логарифмически убывает при переходе из ферромагнитного в парамагнитное состояние, если не учитывать доменную структуру, поэтому физики изучали, как меняется восприимчивость в зависимости от внешнего магнитного поля.
Сначала ученые рассмотрели классический случай, когда внешнее магнитное поле направлено перпендикулярно магнитной оси. Как и предсказывает теория, вплоть до критического значения напряженности магнитного поля (когда происходит переход) восприимчивость не менялась, а при переходе через критическое значение — начинала плавно убывать с ростом напряженности. Несоответствие с теорией физики обнаружили, когда изменили угол приложения поля, таким образом, его проекция на легкую ось стала ненулевой. При достижении критической напряженности магнитная восприимчивость резко падала. Также ученые наблюдали сильное уменьшение критической напряженности при уменьшении угла (соответственно увеличении проекции) между легкой осью и направлением напряженности.
Несоответствие характера изменения восприимчивости теории послужило одним из обоснований влияния доменов на переход. Резкое изменение восприимчивости, по мнению авторов работы, свидетельствует о спонтанном нарушении симметрии, но поскольку микроскопическая симметрия разрушается при приложении поля из-за особенностей структуры фторида лития и гольмия, единственная оставшаяся симметрия, которую можно разбить, — домены.
Чтобы подтвердить эмпирические выводы, авторы разработали теоретическую модель, которая учитывает доменное взаимодействие. В этой модели суммарные магнитные моменты доменов ориентированы вдоль оси легкого намагничивания и оси наложения поля, домены с разным направлением вдоль легкой оси чередуются. Сами домены имеют прямоугольную форму, толщина антинаправленных доменов уменьшается с ростом магнитного поля. При фазовом переходе сначала разрушается микроскопический порядок, а потом истончаются и разрушаются антинаправленные домены и затем происходит полное разупорядочивание моментов. При таком описании энергию взаимодействия доменов можно представить как энергию взаимодействия магнитных моментов атомов, только имеющую большую величину и нормированную на объем домена. Эта модель показала отличное согласие с экспериментальными данными как для микроскопического случая — когда поле приложено перпендикулярно легкой оси и доменным взаимодействием можно пренебречь, — так и для случая наклонного поля.
Работа ученых показывает, что наличие доменной структуры меняет характер ферромагнитного квантового фазового перехода и влияет на значение критических параметров, в частности критической напряженности. Поэтому для описания систем с мезоскопической симметрией необходимо учитывать доменное взаимодействие, которое может быть определяющим механизмом переходов. Физики пишут, что эти механизмы могут привести к появлению у квантовых материалов каких-то новых свойств , которых нет у классических аналогов. А также дает возможность оценить квантовую запутанность спиновых систем и изучить процессы туннелирования одиночных моментов и доменных стенок.
Для исследования квантовых фазовых переходов все чаще применяют квантовые симуляторы, например, в прошлом году 256-кубитный вычислитель открыл несколько квантовых фаз, а другой обнаружил фазовый переход сквозь шум.
Илья Бения
Пока эти результаты вызывают сомнения
Физики из Южной Кореи обнаружили у апатита свинца, в котором часть атомов свинца замещена медью, сверхпроводящие свойства при комнатной температуре. Ученые утверждают, что полученный методом твердотельного синтеза материал — первый сверхпроводник при комнатной температуре и атмосферном давлении. Температура перехода разрушения сверхпроводящего состояния достигает в нем 127 градусов Цельсия, пишут исследователи в препринтах (1, 2) на arXiv.org. Впрочем, некоторые физики уже выразили сомнения в обоснованности опубликованных результатов. Сверхпроводимость — эффект, при котором у некоторых материалов электрическое сопротивление становится нулевым, — обычно наблюдается при экстремально низких температурах. Лишь в конце XX века удалось получить материалы, обладающие высокотемпературной сверхпроводимостью. Первым материалом с критической температурой (Тс) выше точки кипения азота (-195,8 градуса Цельсия) был оксид итрия-бария-меди. Только в 2010-х годах были открыты новые типы сверхпроводников, способных сохранять свои свойства при температурах, более близких к комнатной. При сверхвысоких давлениях (более миллиона атмосфер) сверхпроводящие свойства возникают и у гидридов многих элементов, например, у сероводорода. Недавно физики подтвердили наличие сверхпроводимости гидрида лантана LaH10 при −23 градусах Цельсия. Уже в этом году американские ученые получили сверхпроводимость гидрида лютеция, легированного азотом, при комнатной температуре и умеренно экстремальном давлении. Впрочем, другие группы воспроизвести их результаты пока не смогли. Группа корейских физиков под руководством Ли Сукбэ (Sukbae Lee) из Центра исследований квантовой энергии обнаружила, что в материале на основе апатита свинца Pb10-xCux(PO4)6O (доля x составляет от 0,9 до 1,1) сверхпроводящие свойства наблюдаются при комнатной температуре и атмосферном давлении, то есть без необходимости сжимать образец до сотен миллионов атмосфер. Материал LK-99 получен с помощью твердотельного синтеза в герметичной трубке, вакуумированной до 1,3 × 10-6 атмосфер. Анализ полученного порошка LK-99 при помощи рентгеновской дифракции показал, что величина постоянной его кристаллической решетки на 0,48 процентов меньше, чем у апатита свинца. Ученые связали это изменение с частичным замещением атомов свинца на более компактные по размеру атомы меди. Авторы исследования полагают, что это привело к возникновению внутренних механических напряжений в кристалле, которые в конечном итоге и стали причиной сверхпроводимости. Наличие сверхпроводимости в материале ученые подтвердили, наблюдая левитацию образца в магнитном поле за счет эффекта Мейснера, а также исследуя зависимость удельного сопротивления вещества от температуры. Физики определили, что критическая температура (Тс), при которой образец LK-99 терял сверхпроводящие свойства, составляет от 104 до 127 градусов Цельсия. Ниже этой температуры ученые выделили несколько характерных участков. В диапазоне до примерно 60 градусов Цельсия удельное сопротивление практически равнялось нулю с незначительными шумовыми сигналами. При более высоких температурах наблюдался плавный рост удельного сопротивления. Авторы интерпретировали этот рост как локальные нарушения сверхпроводимости в отдельных областях поликристаллического образца. Если результаты корейских физиков подтвердятся, LK-99 может стать первым веществом со сверхпроводимостью при комнатной температуре и атмосферном давлении. Впрочем, исследования сверхпроводимости при комнатной температуре часто вызывают вопросы у научного сообщества, даже если добираются до публикации в рецензируемых журналах. Например, после проверок в 2022 году из Nature отозвали статью американских исследователей, которые нашли сверхпроводимость при 17 градусах Цельсия в смеси сероводорода, метана и водорода. Технические вопросы, из-за которых отозвали статью о сверхпроводимости углеродистого сероводорода, возникли и к этой работе. Так, сомнения в обоснованности выводов корейских ученых высказал профессор химического факультета МГУ Евгений Антипов, который вместе с Сергеем Путилиным открыл в 1993 году новое семейство ртутьсодержащих сверхпроводящих купратов. Один из них — HgBa2Ca2Cu3O8+x — на настоящий момент имеет рекордную подтвержденную на данный момент критическую температуру, −138 градусов Цельсия. В разговоре с N + 1 химик прокомментировал открытие коллег: «Я не думаю, что эта статья выйдет в каком-либо серьезном журнале, потому что она не отвечает принятым стандартам. У меня вызывает большие сомнения возможность реализации сверхпроводимости в соединении с такой формулой. Это оксофосфат двухвалентного свинца, а двухвалентный свинец отличается тем, что у него свободные электроны локализованы, они не могут переходить в зону проводимости — а значит они будут локализованы на катионах свинца». Вопросы у Антипова вызвала и возможность замещения двухвалентного свинца на двухвалентную медь в том синтезе, который проводили корейские ученые: «Представленные данные не убеждают в возможности такого замещения, так как в образце присутствует примесь сульфида меди Cu2S. С точки зрения кристаллохимии это выглядит не очень обоснованно, а с точки зрения эксперимента — они получили образец с примесями, при этом примеси там много. Поэтому говорить, что медь находится в позиции свинца, когда она присутствует в виде примесей — не обосновано». Физики продолжают изучать различные вещества и способы достичь высокотемпературной сверхпроводимости. Например, ранее мы писали, как сверхпроводимость ищут даже в радиоактивных веществах. О том как механическое напряжение помогает получить состояние сверхпроводимости в графене читайте в нашем материале «Тонко закручено».