Американские физики сообщили о том, что они увидели признаки анизотропного вигнеровского поликристалла в пленках арсенида алюминия. Для усиления эффекта физики прикладывали дополнительное механическое напряжение вдоль одного из направлений. О сжатости вигнеровского кристалла ученые судили по анизотропному поведению дифференциального сопротивления. Исследование опубликовано в Physical Review Letters, кратко о нем сообщает Physics.
Представление об электронах, распространяющихся по кристаллической решетке, словно атомы или молекулы в некотором объеме, нашло свое отражение в модели электронного газа. Со временем физики нашли режимы, в которых движение электронов можно описать гидродинамическими уравнениями в рамках модели электронной жидкости. В таких жидкостях недавно обнаружили настоящие электронные водовороты.
Следуя такой логике, стоит ожидать, что при каких-то условиях достаточно холодные электроны выстроятся в упорядоченный массив — аналог обычных кристаллов. Такие гипотетические структуры впервые были предложены Юджином Вигнером в 1934 году и потому носят его имя, а первое косвенное обнаружение трехмерных вигнеровских кристаллов датируется 1979 годом. С тех пор физики старались снизить размерность этих структур, чтобы исследовать новые эффекты.
Несмотря на то, что двумерные и одномерные кристаллы Вигнера также были получены, воспроизведение такой экзотической фазы вещества в широком диапазоне материалов до сих пор остается непростой задачей. Например, двумерные структуры образуются только в идеальных бездефектных пленках, внутри которых энергия кулоновского взаимодействия много больше, чем тепловая энергия электронов, а также их энергия Ферми (то есть максимально возможная энергия электронов при абсолютном нуле). В ультрахолодном пределе отношение первой к последней должно превышать 35. Без дополнительных ухищрений вроде наведения муаровой сверхрешетки довольно сложно найти материалы, чьи параметры позволили бы достичь этого значения.
К таким веществам относятся пленки из арсенида алюминия, с которыми в Принстонском университете работают Шафаят Хоссейн (Shafayat Hossain) и его коллеги. Они сообщают, что довели отношение энергий в этом материале до 50 и обнаружили признаки вигнеровского кристалла. Однако в отличие от предыдущих исследований, его решетка была не треугольной, а сжатой вдоль одного из направлений из-за анизотропии электронных свойств в пленках AlAs, усиленных дополнительным механическим растяжением.
Отношение энергии кулоновского взаимодействия к энергии Ферми равно среднему межэлектронному расстоянию в единицах радиуса Бора. Выражение для этого отношения линейно зависит от эффективной массы электрона в кристалле и по закону обратного квадратного корня от концентрации электронов в пленке.
Эффективная масса — это параметр, который характеризует низкоэнергетическое поведение электронов в кристаллах. Из-за перманентного рассеяния на атомах решетки энергия электрона сложным образом зависит от его импульса. Закон дисперсии электрона в этом случае может обладать максимумами и минимумами, в окрестностях которых можно применять параболическое приближение. Тогда связь энергии с импульсом напоминает таковую для электронов в вакууме: квадрат модуля импульса, деленный на удвоенную массу электрона. Применяя эту формулу к решеточным условиям, физики определяют эффективную массу. Другими словами, при не слишком больших импульсах, электрон в решетке можно считать свободным, но его масса может быть существенно другой, даже отрицательной.
Более того, дисперсионные соотношения в кристаллах чаще всего анизотропны. Окрестности их минимумов и максимумом называют долинами (valleys), а совокупность технологических методов, основанных на этом эффекте, — волитроникой (valleytronics). Обычно долины анизотропны. Это значит, что эффективная масса зависит от направления движения частицы, а потому представляет собой тензор. В пленках арсенида алюминия толщиной 21 нанометр, с которыми работали авторы, продольная и поперечная массы равны 1,1 и 0,2 массы свободного электрона.
В своей работе физики дополнительно усиливали эту анизотропию, прикладывая механическое натяжение к пленке вдоль направления [100]. Пленка имела форму квадрата со стороной 1,5 миллиметра. Вдоль ее периметра физики равномерно размещали восемь электродов для измерения сопротивления вдоль различных направлений. Прикладывая дополнительное электрическое поле с помощью затвора, они управляли концентрацией электронов, поддерживая ее в окрестностях нескольких десятков миллиарда частиц на квадратный сантиметр. Исследование анизотропии резистивности при различной температуре и концентрации электронов показало, что образец обладает высоким качеством и способен поддерживать вигнеровский кристалл, а электроны заселяют только одну долину, ориентированную вдоль направления [010].
Чтобы его обнаружить, ученые сконцентрировались на зависимости дифференциального сопротивления от напряжения между электродами. В обычных условиях эта величина постоянная в широком диапазоне напряжений. Однако ниже некоторого порога по температуре и концентрации электронов, сопротивление резко возрастало, что было признаком «замораживания» электронов в кристалл. Ярко выраженная разница дифференциальных сопротивлений между направлениями [100] и [010] свидетельствовала о том, что этот кристалл неоднороден (то есть имеет полидоменную структуру) и анизотропен.
Сравнение результатов экспериментов с существующей теорией позволило оценить средний размер домена, оказавшегося равным 7×10−13 квадратных метров, что для концентрации в 1,3×1010 частиц на квадратный сантиметр дает примерно 90 электронов на домен. Кроме того, авторы исследовали, как температура «плавления» вигнеровского кристалла зависит от концентрации. Она оказалась на порядок большей, чем того предсказывают оценки для идеально чистых пленок. Физики полагают, что такая разница обусловлена неизбежным наличием примесей в их образце.
Ранее мы рассказывали, как другая группа физиков деформировала одномерный вигнеровский кристалл с помощью дополнительных полей, сделав его зигзагообразным.
Марат Хамадеев
Без ухудшения параметров детектирования
Физикам удалось увеличить разрешение сверхпроводниковой камеры до 400 тысяч пикселей. Скорость работы и чувствительность камеры позволяет получать изображение от сигналов очень слабой мощности, а ее структура — масштабировать устройство в дальнейшем. Работа опубликована в Nature.Детекторы на сверхпроводниках применяются во многих областях — от исследований черной материи до квантовых вычислений и коммуникации. Сложно выделить какой-то один параметр, по которому детекторы на сверхпроводниках превзошли полупроводниковые лавинные детекторы — они обладают и высокой эффективностью детектирования фотона (порядка 98 процентов) и небольшим мертвым временем (меньше трех пикосекунд), работают в диапазоне от ультрафиолета до ИК-излучения, а их темновой шум составляет не больше микрогерца. Один из возможных путей развития технологии сверхпроводниковых детекторов — создание сверхчувствительных камер. Чтобы собрать из детекторов камеру, необходимо очень быстро и очень точно определять, какой именно детектор сработал. Для этого можно считывать сигнал отдельно с каждого детектора, подводя к нему свою шину, но такой подход сложно масштабировать — для 20 тысяч пикселей нужно 20 тысяч управляющих шин — такая система окажется очень громоздкой. Можно делать длинные детекторы и измерять время прилета электрона, обрабатывать эти данные и тоже получать изображения. Однако, и тут возникает сложность масштабирования — изготовить такие детекторы технически сложно.Группа физиков из Национального института стандартов и технологий под руководством Адама Маккогана (A. N. McCaughan) объединила два этих подхода и сделала камеру с разрешением в 400 тысяч пикселей. Им удалось превзойти предыдущую реализацию камеры на сверхпроводниковых диодах в 20 раз. Авторы собрали матрицу из детекторов, где у каждой строки и каждого столбца были свои шины считывания. Чувствительные области камеры, которые поглощают фотоны, чередуются с диэлектрическими прослойками, в которых плотность тока мала, поэтому они никак не реагируют на прилет фотона и позволяют отделять детекторы друг от друга. Прилетевший фотон создает в цепи сопротивление, которое отводит ток смещения их детектора на нагревательный элемент термодатчика. Он, в свою очередь, генерирует фононы, которые разрушают сверхпроводимость и создает два противоположных по полярности напряжения импульса. Оба импульса распространяются по считывающей шине в разные стороны и с большими скоростями. По разности времен прихода можно определить, какой именно детектор сработал. Физики следили за темновым шумом системы и отключали детекторы, которые вносили наибольший вклад в общий шум. Таких оказывалось всего порядка 58 на 1300 работающих исправно. Кроме этого очень важно следить за тем, чтобы детектор поймал фотон и конечный импульс добрался до шины передачи сигнала. Авторы отметили, что энергия, необходимая для срабатывания шины, на два порядка ниже реальной энергии, которую передает детектор. Единственная проблема, которую пока еще не удалось решить — это повышение эффективности оптического детектирования фотонов, с ней физикам еще предстоит разобраться. Помимо создания камер на основе сверхпроводниковых детекторов ученые исследуют возможности сверхпроводников и в других направлениях. Например, создают детекторы, способные считать число фотонов (пока только до четырех) или увеличивают их в размере для повышения эффективности.