Немецкие физики применили технику времяпролетной визуализации к вырожденному атомному ферми-газу в оптической ловушке для исследования механизма образования атомами куперовских пар. Спаривание проявило себя через парные корреляции атомных импульсов. Авторам удалось управлять вероятностью рождения пар и их энергией с помощью настройки оптических и магнитных полей в ловушке. Исследование опубликовано в Nature.
Законы квантовой механики универсальны. Разные ансамбли частиц будут вести себя одинаково, если одинаковы взаимодействия между частицами. Это будет так даже в том случае, если в разных ансамблях будут частицы разной природы. Этот принцип положен в основу квантовых симуляций, когда с помощью одной системы можно имитировать процессы, происходящие в другой.
Чаще всего в роли симулирующей системы выступают холодные атомные газы, удерживаемые в оптических ловушках. Такие системы чрезвычайно гибки в плане настройки свойств атомов и взаимодействий между ними с помощью параметров ловушек и внешних полей. Это позволяет изучать с их помощью процессы, протекающие внутри обычных твердых тел с участием электронов. В частности, физикам интересно разобраться, как происходит куперовское спаривание электронов, приводящее к сверхпроводимости и к сверхтекучести.
Впрочем, мало заставить атомы правильно взаимодействовать, их нужно еще как-то регистрировать. Разные группы решают это проблему по-разному. Так, немецкие физики предложили растягивать атомный газ с помощью дополнительного потенциала и изучать его оптическими методами. А их соотечественники из университета Гейдельберга при участии Марвина Холтена (Marvin Holten) измеряли флуоресценцию атомов, которые разлетелись достаточно далеко после выключения удерживающего потенциала. Измеряя таким способом атомные импульсы, они восстанавливали их положение относительно друг друга, подтвердив существование кристаллов Паули.
Теперь та же команда увидела образование куперовских пар не из двух электронов, а из двух фермионных атомов. Ученые использовали ту же саму технику времяпролетной регистрации атомных импульсов. Это значит, что они видели не сами куперовские пары, а влияние их образования на корреляции между импульсами атомных пар с противоположными спинами. Другими словами, если в атомном ансамбле образовывались пары, то их импульсы после разлета всегда были равны по модулю и направлены ровно в противоположные стороны.
В качестве объекта исследования физики выбрали мезоскопический холодных квантовый газ атомов 6Li. Говоря проще, атомов в ансамбле было не мало, но и не много (от двух до двадцати штук), а сами они находились при очень холодной температуре. При достаточно сильном охлаждении начинает проявляться квантовость газа, которая зависит от его статистики: бозонной или фермионной. В первом случае обычный газ стремится превратиться бозе-конденсат, во втором — вырожденный ферми-газ, в котором атомы не могут перейти на наинизший энергетический уровень из-за принципа запрета Паули. Изотопы 6Li относятся ко второй группе.
Физики запирали атомы в комбинированной оптической ловушке, представляющей собой плоский диск. В ней вдоль осевого направления атомы могли занимать только один уровень, в то время как в радиальном направлении они испытывали потенциал гармонического осциллятора. Такая ловушка представляет собой квазиатом, где роль электронов играют настоящие атомы, а квантовое число осциллятора эквивалентно номеру оболочки. Первая оболочка вмещает два атома со спином 1/2 (по числу возможных проекций спина), вторая — четыре, третья — шесть и так далее. Авторы проводили опыты для четырех различных конфигураций с замкнутыми оболочками, вмещавших в себя 2, 6, 12 и 20 атомов, соответственно. В таком режиме все внешние атомы находятся на поверхности Ферми.
Замечательная особенность установки, которую сделали ученые, заключалась в том, что они могли контролировать разницу между энергетическими уровнями квазиатома, настраивая свойства ловушки, а также менять энергию связи между атомами в потенциальных куперовских парах с помощью внешнего магнитного поля. Отношение этих двух параметров оказалось ключевым рычагом для управления вероятностью образования таких пар. Когда энергия связи была меньше, чем один шаг на энергетической лестнице ловушки, физики не видели следов пар. С ростом же их отношения в импульсном спектре начали появляться скоррелированные сигналы с энергиями чуть выше энергии ферми. Наконец, когда оно превысило 15, пары стали рождаться чаще и даже с меньшими импульсами.
Принцип запрета Паули в вырожденных ферми-газах приводит и к другому интересному явлению — оптической прозрачности. Не так давно мы рассказывали, как его обнаружили сразу три группы физиков одновременно.
Марат Хамадеев
В нем удалось разогнать электроны на 43 процента
Немецкие физики создали когерентный нанофотонный ускоритель электронов, который не только способен ускорять частицы, но и фокусирует их пучок. В нем удалось разогнать электроны на дистанции 500 микрометров в канале шириной всего 225 нанометров, при этом первоначальная энергия пучка увеличилась на 43 процента. Статья об этом опубликована в журнале Nature. Традиционно для ускорения заряженных частиц ученые используют высокочастотные резонаторы. Наибольший успех имеют кольцевые ускорители, в которых энергия частиц повышается с каждым новым витком. Например, Большой адронный коллайдер — пожалуй, самый известный кольцевой ускоритель — достиг рекордной энергии 6,8 тераэлектронвольт на пучок. К сожалению, ускорять электроны до высоких энергий в кольцевых ускорителях не дает их малая масса и синхротронное излучение, которое уносит накопленную энергию. Для получения электронов высоких энергий строят линейные ускорители, такие как SLAC. Градиент ускорения, который испытывают частицы в классических ускорителях, ограничен пиковым радиочастотным полем, которое могут выдержать металлические поверхности конструкции, и обычно составляет десятки мегавольт на метр. О том, с какими еще сложностями сталкиваются ученые при модернизации Большого адронного коллайдера, мы писали в материале «Стойкий оловянный магнит». Чтобы обойти подобные ограничения, ученые разрабатывают другое направление в ускорительной технике — диэлектрические лазерные ускорители (нанофотонные ускорители). Диэлектрические материалы могут выдерживать оптическую нагрузку до десяти гигавольт на метр. Подобные технологии потенциально могут на несколько порядков сократить требуемые размеры и стоимость ускорительных комплексов. Томас Хлоуба (Tomáš Chlouba) и его коллеги из Университета имени Фридриха — Александра в Эрлангене и Нюрнберге создали когерентный нанофотонный ускоритель электронов, который состоит из двух рядов кремниевых столбиков высотой два микрометра. Ученые освещали столбики сверху лучом лазера длиной волны 1,93 микрометра, чтобы создать необходимый режим ближнего поля. Электронный пучок инжектировался в эту структуру между рядами столбиков с начальной энергией электронов 28,4 килоэлектронвольт. Если выполнено условие синхронизации — период структуры отнесенный к длине волны лазера равен скорости электронов, нормированных на скорость света в вакууме — то электроны и оптическая ближнепольная мода движутся с одинаковой скоростью. Чтобы ускорить электроны, ученые увеличили период структуры. Ученым удалось не только разогнать электроны, но и решить проблему их фокусировки. Согласно теореме Ирншоу одновременная фокусировка луча электронов по всем трем направлениям невозможна. Однако это ограничение физики сумели обойти, применив технику попеременной фазовой фокусировки. Чтобы изменить фазу синхронизации, Хлоуба с коллегами увеличил один из промежутков между последовательными парами кремниевых столбиков. Это привело к фокусировке электронов в поперечном направлении, но к дефокусировке в продольном. Внедряя аналогичные фазовые сдвиги далее вдоль следования пучка электронов, физики попеременно фокусировали пучок либо в продольном, либо в поперечном направлении. В результате ученым удалось разогнать электроны на 43 процента до энергии 40,7 килоэлектронвольт на расстоянии 500 микрометров и при этом сохранить фокусировку пучка в канале шириной всего 225 нанометров. Физики отмечают, что полученные энергии электронов пока далеки от масштабов гигаэлектронвольт, а также наблюдались существенные потери электронов из-за недостаточной оптимизации установки. Однако представленный концепт может быть доработан и масштабирован, что по мнению ученых потенциально может привести к созданию более дешевых и компактных ускорителей электронов в будущем. Идея компактных ускорителей частиц крайне привлекает ученых. Например, ранее мы писали, как при помощи терагерцового излучения физики разогнали электроны в ускорителе размером со спичку.