Химики из Германии показали, как мог проходить синтез пептидов до возникновения жизни на Земле. Они выяснили, что на фрагментах транспортных РНК с неканоническими азотистыми основаниями, содержащими остатки аминокислот, могут получаться пептиды без участия рибосом. Исследование опубликовано в журнале Nature.
Молекулы РНК — хранители генетической информации в живых организмах. Они состоят из нуклеотидов, которые содержат азотистые основания — аденин (A), урацил (U), гуанин (G) и цитозин (C). На основе генетического кода, который хранят молекулы РНК, происходит биосинтез белков. При этом для биосинтеза необходима рибосома, именно с ее помощью образуются пептидные связи между аминокислотами, а в результате получается белок.
Так как за счет считывания информации с РНК происходит биосинтез белка, многие биологи считают, что молекулы РНК существовали до появления белков и катализировали синтез сложных органических молекул в пребиотических условиях (гипотеза мира РНК). Но как именно молекулы РНК могли ускорять синтез белков и пептидов, ученым до сих пор неизвестно.
Химики под руководством Томаса Карелла (Thomas Carell) из Мюнхенского университета Людвига и Максимилиана нашли один из возможных механизмов этого процесса. Им было известно, что в состав молекул транспортных РНК, помимо четырех основных азотистых оснований, могут входить несколько неканонических оснований. Причем некоторые из них содержат остатки аминокислот. Поэтому ученые предположили, что из этих аминокислотных остатков в пребиотических условиях могли получаться пептиды.
Чтобы проверить свою гипотезу, химики синтезировали два комплементарных набора цепей тРНК, содержащих неканонические азотистые основания. В одном из наборов неканонические нуклеотиды содержали фрагменты аминокислот со свободной карбоксильной группой, а в другом — свободную аминогруппу. Когда ученые смешали две комплементарные цепи тРНК из двух наборов в водном растворе, между ними образовались водородные связи, а фрагменты аминокислот стали ближе друг к другу.
Затем химики добавили в смесь карбодиимид — активатор карбоксильной группы — и между двумя аминокислотными фрагментами образовалась пептидная связь. В результате дальнейшего нагревания раствора при температуре 90 градусов Цельсия произошел гидролиз, а фрагмент аминокислоты оказался на комплементарной цепи тРНК. Таким образом ученые выяснили, что комплементарные РНК с неканоническими основаниями могут передавать друг другу аминокислотные фрагменты с образованием пептидов.
Когда химики попробовали провести эту же цепочку превращений несколько раз, им удалось получить полипептид. Но реакция работала не всегда, а только в случае, если исходные РНК содержали как минимум три нуклеотида и были комплементарны. Интересно, что в обычном биосинтезе белков на рибосомах каждую аминокислоту также кодируют три нуклеотида РНК.
В результате химики показали, что полипептидные цепочки могут образовываться при участии тРНК без рибосом. При этом синтез контролируется комплементарностью молекул тРНК, как и в случае обычного биосинтеза на рибосоме. Реакции образования пептидной связи протекали с выходом около 50 процентов, а выход реакции гидролиза в большинстве случаев не превышал 10 процентов: при нагревании до 90 градусов часть цепей тРНК разрушалась.
Ранее мы уже рассказывали о том, как молекулы РНК могли катализировать другие химические реакции до возникновения жизни на Земле.
Михаил Бойм
И получили продукты циклоприсоединения бициклических алкенов
Американские химики разработали общий подход к генерации напряженных бициклических алкенов, существование которых запрещает правило Бредта. Ученые получили набор таких алкенов in situ с помощью син-элиминирования и ввели их в разные реакции циклоприсоединения. Исследование опубликовано в Science.