У мышей, которых научили бояться звуковых сигналов, изменяется активность отдельных дендритов в клетках миндалины, говорится в исследовании, опубликованном в журнале Science. При этом пластичность в дендритах во время экспериментов не всегда согласовывалась с пластичностью клеточных тел нейронов.
Чтобы усвоить новые знания или опыт, мозг изменяет связи между нейронами — синапсы: создает новые, удаляет старые или меняет их силу и эффективность. Это свойство называют синаптической пластичностью и активно изучают в связи с разными типами обучения у разных организмов.
Нейроны принимают электрические импульсы от других клеток специальными отростками — дендритами. Дендритов у нейронов много и они ветвятся — это позволяет клеткам образовывать сразу много разных синапсов и принимать сигналы разных типов клеток. Исследования по синаптической пластичности фокусируются сразу на целом нейроне, объединяя его отростки и само клеточное тело, хотя логично было бы предположить, что изменения происходят на уровне отдельных дендритов и их синапсов — в зависимости от источника сигнала.
Ученые из института биомедицинских исследований в Базеле попробовали отследить синаптическую пластичность в отдельных дендритах живой мыши. Для появления пластичности животных необходимо было научить чему-то — здесь исследователи применяли классическое ассоциативное обучение. Мышей обучали бояться звуковых сигналов: при подаче звука их всякий раз били током по лапкам.
Одновременно с этим активность нейронов миндалины — этот отдел мозга считается ответственным за страх — записывали при помощи двухфотонного микроскопа. Визуализировать передачу сигнала удалось благодаря белку, который флуоресцирует при связывании с ионами кальция, которые и создают ток во время активации нейрона.
Оказалось, что такое обучение действительно способствует локальному изменению активности в дендритах. При этом чаще всего изменение напряжения в этих отростках согласовывалось с изменением в теле нейронов (p<0,05), но были и дендриты, в которых активность менялась вне зависимости от других частей клетки.
Кроме того, исследователи проверили, как пластичность в дендритах зависит от окружающих нейронов-ингибиторов — клеток, которые способны подавлять активность соседей. Для этого они «выключили» ингибирующие нейроны и вновь записали активность основных клеток миндалины — и активность в дендритах действительно выросла. Таким образом, локальная пластичность в дендритах вместе с ее регуляцией через нейроны-ингибиторы позволяет увеличить теоретическую вычислительную мощность нейросетей в миндалине — и, возможно, сделать поведение животного в опасной ситуации более гибким.
Механизмы нейропластичности регулируются не только на уровне нейронов, но и на уровне белков внутри них — например, тех, что формируют связи между этими клетками. Недавнее исследование показало, что на работу генов этих белков влияет псилоцибин. У крыс, принимавших это вещество, работа генов усилилась.
Анна Муравьёва
Это указывает на то, что инфантильная амнезия отражает несовершенные процессы посткодирования
Ученые из США обнаружили, что маленькие дети способны (по крайней мере ненадолго) запоминать визуальные стимулы — и этот процесс сопровождается активностью нейронов гиппокампа. Таким образом, причины инфантильной амнезии, вероятно, не в том, что незрелый гиппокамп не может кодировать воспоминания, а в том, что эти воспоминания затем становятся недоступны для извлечения. Работа опубликована в журнале Science.