Астрономы отыскали лежащую на боку черную дыру в двойной рентгеновской системе

Астрономы впервые с большой точностью измерили угол между осью вращения черной дыры и осью орбиты рентгеновской двойной системы. В случае системы MAXI J1820+070 он оказался более 40 градусов, из-за чего черная дыра в ней кажется для земного наблюдателя лежащей на боку. Открытие позволит проверить модели образования черных дыр. Статья опубликована в журнале Science.

В астрофизике черные дыры описываются всего двумя параметрами — массой и спином. Когда черная дыра находится в двойной системе, то ее можно дополнительно описать скоростью аккреции вещества на нее и углом между осью вращения черной дыры и осью орбиты системы. В случае двойных рентгеновских систем, содержащих черные дыры, может наблюдаться значительное рассогласование осей, что будет проявляться, например, в виде эффекта Лензе-Тирринга горячего потока вещества вокруг черной дыры. Обнаружение орбитальной прецессии с помощью обсерваторий LIGO и Virgo в сигналах гравитационных волн от некоторых событий слияний черных дыр также свидетельствует в пользу значительного рассогласования осей в этих системах. Наличие сильного несовпадения осей вращения накладывает сильные ограничения на механизмы взрыва массивных звезд и образования черных дыр. Чтобы определить спин черной дыры можно воспользоваться порождаемыми ею в двойной системе джетами, а наклонение орбиты может быть определено в ходе наблюдений за изменениями яркости системы в оптическом и рентгеновском диапазонах волн.

Группа астрономов во главе с Юрием Поутаненом (Juri Poutanen) из Лаборатории фундаментальной и прикладной рентгеновской астрофизики ИКИ РАН опубликовали результаты анализа данных высокоточных поляриметров DIPol-2 и DIPol-UF, установленных на Северном Оптическом Телескопе, за рентгеновской двойной системой MAXI J1820+070 в спокойном состоянии и состоянии вспышки. Система была первоначально обнаружена рентгеновским монитором MAXI, установленным на МКС, в марте 2018 года, она содержит черную дыру с массой 8 масс Солнца и звезду-компаньона, которая в два раза легче Солнца. В системе наблюдаются джеты, видимые в рентгеновском и радиодиапазонах.

Ученые определили, что значения позиционного угла двойной системы, который определяет ее отклонение относительно направления на северный полюс эклиптики, определенные по джетам и поляриметрическим методом, отличаются друг от друга, что говорит о рассогласованности оси орбиты двойной системы от оси вращения черной дыры. Измеренное смещение осей составило более 40°, отмечается, что этот результат очень надежен и не зависит от деталей моделирования. Наблюдаемое рассогласование осей должно быть связано либо с эволюцией двойной системы, либо со процессом формирования черной дыры, так как аккреция вещества на черную дыру всегда сближает две оси между собой.

Ранее мы рассказывали о том, как астрономы отыскали искривленный аккреционный диск вокруг черной дыры в двойной системе.

Александр Войтюк

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.
Яркое пятно и темный вихрь на Нептуне оказались на аналогичной высоте

Это заметил телескоп VLT

Астрономы при помощи телескопа VLT определили, что за отражательные свойства наблюдавшегося в 2018 году на Нептуне нового темного вихря и сопутствовавшего ему яркого пятна отвечали частицы дымки из одного и того же слоя аэрозолей. Это означает, что свойства антициклонов на планетах-гигантах сильно зависят от положения средней плоскости вихря в атмосфере планеты. Статья опубликована в журнале Nature Astronomy. Вихри планетарного масштаба представляют собой обычное явление в атмосферах планет-гигантов Солнечной системы. Самый известный пример — гигантский антициклон Большое Красное Пятно на Юпитере, которое наблюдается более трехсот лет. В 1989 году зонд «Вояджер-2» обнаружил на Нептуне еще один крупный ураган, которым стал антициклон Большое Темное Пятно, его размер около десяти тысяч километров. Однако этот вихрь наблюдался всего лишь около семи месяцев, в дальнейшем в атмосфере ледяного гиганта обнаруживались и другие недолговечные темные вихри, как в его северном, так и в южном полушарии. Группа астрономов во главе с Патриком Ирвином (Patrick Irwin) из Оксфордского университета опубликовала результаты анализа данных наблюдений в октябре-ноябре 2019 года, проведенных при помощи спектрографа MUSE, установленного на наземном комплексе телескопов VLT. Наблюдения за атмосферой Нептуна велись в оптическом и ближнем инфракрасном диапазоне. Их целью был обнаруженный в 2018 году темный вихрь NDS-2018 в северном полушарии планеты. Пятно имело такой же размер, как и Большое Темное Пятно, и постепенно сместилось к экватору Нептуна, прежде чем, по-видимому, исчезло в конце 2022 года. Ученые определили, что темная окраска вихря вызвана хромофором, находящимся в слое аэрозолей при давлении более 5–7 бар, содержащим сероводород (H2S). Он, в свою очередь, может подвергаться фотолизу ультрафиолетовым излучением Солнца, поднимаясь, или же фотолиз сероводорода идет в ледяных оболочках частиц дымки, переносимых вниз из стратосферы. В результате частицы в слое становятся менее отражающими излучение с длинами волн короче 700 нанометров. Кроме того, исследователи обнаружили, недолговечное яркое пятно DBS-2019, располагавшееся на юго-западном краю вихря NDS-2018, которое связывается с тем же слоем аэрозолей при давлении в 5 бар. По мнению ученых, эта структура принципиально отличается от ранее наблюдавшихся ярких метановых облаков-спутников Большого Темного Пятна, которые располагались значительно выше в атмосфере Нептуна, при давлении 0,6–0,2 бар. Ранее мы рассказывали о том, как трехслойная модель дымки объяснила разницу в цвете Урана и Нептуна.