Планетологи не нашли различий между реголитом и грунтом астероида Рюгу

Команда межпланетной станции «Хаябуса-2» опубликовала новые результаты анализа данных наблюдений станции и спускаемых аппаратов за астероидом Рюгу и образцов его грунта, доставленных на Землю. Выяснилось, что свойства образцов аналогичны поверхностному реголиту астероида, а сам реголит Рюгу характеризуется слабым сцеплением с более крупными булыжниками и прочностью меньше, чем у хондритов. Статья опубликована в журнале Science.

Автоматическая станция «Хаябуса-2» исследовала околоземный астероид С-класса (162173) Рюгу не только с орбиты, но и получила две пробы грунта (с поверхности и из подповерхностного слоя астероида), которые были доставлены на Землю в декабре 2020 года, а также высадила на астероид три спускаемых модуля. Изучение таких тел крайне важно для планетологии, так как позволяет разобраться в процессах, шедших в ранней Солнечной системе, и выяснить пути поставки на Землю воды и органических веществ. В частности, данные, собранные модулями и станцией, уже позволили установить, что частицы грунта очень пористые, что подтверждается лабораторными исследованиями, а также выявить покраснение поверхностного материала Рюгу за счет космического выветривания, отсутствие мелкого реголита и наличие гидратированных силикатов, сформировавшихся при участии жидкой воды.

Группа планетологов во главе с Шого Тачибаной (Shogo Tachibana) из Токийского университета опубликовала новые результаты анализа снимков поверхности Рюгу, сделанных «Хаябусой-2» во время операций забора грунта и спускаемыми модулями во время работы на поверхности астероида, а также результаты лабораторных исследований морфологии частиц грунта, доставленных на Землю. Таким образом ученые хотели сравнить по характеристикам реголит, лежащий на поверхности астероида, с грунтом, который собран из приповерхностного слоя астероида.

Изучив снимки, сделанные станцией, ученые пришли к выводу, что агломераты мелких частиц, покрывавших валуны в районе второй площадки для сбора грунта, действительно были выброшены из приповерхностного слоя глубиной до одного метра во время образования рукотворного ударного кратера. Размер частиц колеблется от одного миллиметра до нескольких дециметров, при этом половина собранных станцией частиц была взята с глубины менее 1,5 миллиметра от уровня поверхности. Обе площадки для забора грунта покрыты валунами двух типов (с гладкой и неровной поверхностями) и галькой.

Также исследователи определили, что во время прыжков спускаемых модулей по поверхности Рюгу и моментов выстрелов по астероиду танталовыми пулями наблюдался разлет частиц диаметром 0,5–1 сантиметра со скоростями 1–2 метра в секунду. Это говорит о том, что галька сантиметрового размера на поверхности астероида обладает слабым сцеплением с более крупными булыжниками и валунами. При этом прочность гальки на растяжение намного ниже, чем у типичных хондритов. Общая масса выброшенных с поверхности частиц Рюгу во время первого забора грунта оценивается в 20–200 грамм, из которых лишь полпроцента попало в пробоуловитель. Морфология разлетевшихся фрагментов грунта совпадает с морфологией валунов — шероховатые частицы и частицы с гладкими гранями. В обоих районах забора грунта наблюдаются также мелкие валуны одновременно удлиненной и плоской формы, что похоже на вкрапления в гидратированных углеродистых хондритах. 

Доставленные на Землю образцы грунта представлены песком миллиметрового размера и галькой почти сантиметрового размера, а также мелкодисперсным порошком субмиллиметрового размера. Все частицы грунта выглядят черными, крупнейшие зерна из камеры А (с поверхности Рюгу) обладают размером 5 миллиметров, а в камеры С есть три камешка крупнее 5 миллиметров, из которых самый крупный характеризовался размером 10,3 миллиметра. Возможно, камера С содержит фрагменты крупного камня. Камера B, которая не использовалась ни для одной из операций забора грунта и расположена между камерами A и C, содержит лишь небольшое количество мелких частиц (размером менее 1 миллиметра), что подтверждает идею о том, что не произошло перемешивания частиц, а галька и песок в камерах A и C являются образцами, полученными в ходе первой и второй операций забора грунта соответственно.

Собранные частицы грунта Рюгу представляют собой зерна с шероховатой и гладкой поверхностью, многие из них демонстрируют криволинейные и прямые трещины, что связывается с микропористостью, микротрещинами или ударной или термической усталостью. Цвет, форма, морфология поверхности и структура собранных образцов грунта аналогичны данным наблюдений станции и спускаемых аппаратов, что означает, что эти образцы действительно отражают эволюцию Рюгу.

О том, что «Хаябуса-2» узнала о Рюгу и деталях этой необычной межпланетной программы можно прочесть в материале «Собрать прошлое по крупицам» и в отдельной теме.

От редактора

После выхода новости мы дополнили ее, чтобы пояснить различие между реголитом Рюгу и добытым с него грунтом.

Александр Войтюк

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.
Снесший в XII веке одну из гималайских вершин мегаобвал пролил свет на эволюцию высокогорных систем

Ученые предполагают, что за подобные катастрофы ответственна постоянная мерзлота на высочайших горных пиках

Геологи обнаружили в Гималаях следы гигантского обрушения, которое уничтожило одну из вершин-восьмитысячников в составе крупного массива Аннапурна. Оползень, сместивший приблизительно 23,5 кубических километра породы, произошел около 1190 года. По мнению ученых, подобные масштабные, но редкие обвалы характеризуют режим эрозии горных систем с большой крутизной склонов и высокими постоянномерзлыми пиками, и показывают, как может протекать долгосрочная топографическая эволюция высокогорных регионов. Об исследовании сообщает статья в журнале Nature. Гималаи ― самая высокая и одна из наиболее активных горных систем на Земле. Однако, несмотря на многочисленные исследования, у ученых пока нет единого мнения о том, как происходит ее развитие с точки зрения соотношения между процессами тектонического поднятия и эрозии. В частности, неясен режим разрушения самых высоких гималайских пиков. Согласно одной из точек зрения, высота гор при любой скорости тектонического подъема зависит главным образом от того, где пролегает граница питания покрывающего их ледника. Предполагается, что эффективное выветривание, которое происходит ниже этой границы, заставляет постепенно отступать вершины ледниковых цирков примерно с той же скоростью, с какой сползающий ледник углубляет дно долины. При этом вершины горной цепи постоянно оказываются на высоте около 1,5 километра над уровнем границы питания ледника. Однако такой механизм действует далеко не всегда. Так, он неприменим при описании Гималаев, где пики-восьмитысячники поднимаются над границей питания на высоту до трех километров: скорость эрозии здесь оказывается ниже, так как на больших высотах не работают циклы таяния и замерзания. Ученые предположили, что в таких условиях предел роста горных пиков обусловлен лишь механической прочностью массива, и изменение их крутизны и высоты происходит за счет оползней. К сожалению, до сих пор отсутствует систематический каталог этих явлений, способных вызвать бедствия из-за перекрытия долин гималайских рек. Поэтому трудно надежно оценить их вклад в многолетнюю эволюцию высокогорных территорий. Сейсмические наблюдения показывают, что районах, расположенных выше трехкилометровой отметки, происходит меньшей оползней, чем в более низких местностях. Это говорит о том, что либо на большой высоте действует иной механизм эрозии, либо частотно-размерное распределение оползней здесь перекошено в сторону очень крупных, но сравнительно редких событий. Свидетельство одной из подобных катастроф обнаружили Жером Лаве (Jérôme Lavé) из Университета Лотарингии и его коллеги из Непала, США и Франции. Гигантский оползень был идентифицирован исследователями в пределах Аннапурны ― одного из высочайших массивов, расположенного в центральной части Непала и принадлежащего к Главному Гималайскому хребту. Следы оползня локализуются в ледниковом цирке Сабче ― глубокой впадине поперечником около 8,5 километра у юго-западного склона пика Аннапурна IV. Цирк Сабче окаймлен чрезвычайно крутыми скалами, а дно его заполнено осадками, которые ранее были описаны как моренные или озерно-ледниковые отложения (труднодоступность района долгое время препятствовала их точному полевому описанию). Лаве и его коллеги установили, что осадки представляют собой брекчию ― породу, образованную сцементированными неокатанными обломками. Брекчия из цирка Сабче состоит из сильно фрагментированных (сантиметрового и дециметрового размера) обломков известняка в пылевидной, богатой карбонатом матрице. Мощность этих отложений превышает 400 метров, а в отдельных местах достигает километра. Цирк оказался заполнен брекчией относительно непрерывно, без каких-либо несогласий, но в ее толще ученые обнаружили внутренние зоны сдвига. Все эти особенности позволили исследователям заключить, что отложения в цирке Сабче образовались в результате единой и чрезвычайно масштабной оползневой обломочной лавины. Объем заполнившего впадину материала оценивается в 23,5 +4/−3 кубических километра. Следы этой каменной лавины исследователи нашли и за пределами цирка, в верхней части долины реки Сети ― сюда, по подсчетам, вышло около 3,5 кубических километра обломков и пыли. С учетом средней пористости брекчии 15 ± 5 процентов общий объем обрушившейся породы ученые оценили в 23,5 +3,5/−3 кубических километра, и это был крупнейший оползень, описанный в Гималаях. Измерение содержания космогенного хлора-36 (36Cl) в образцах, отобранных на поверхностных участках слоя брекчии, позволило получить дату образования этой поверхности ― 1196 год с погрешностью ± 75 лет. Кроме того, Лаве с коллегами датировали полевой шпат в образцах брекчии из внутренней зоны сдвига методом ИК-стимулированной люминесценции (IRSL) и получили несколько больший возраст события: около 1200 лет назад, минимум ― 900 лет назад. Наконец, результаты удалось уточнить с помощью радиоуглеродного анализа растительных фрагментов из зоны контакта между лавинным материалом и коренной породой в долине Сети. Он дал калиброванную дату 1190 год с погрешностью ± 26 лет. Ученые определили место мегаобвала ― северо-восточный склон цирка Сабче, рядом с пиком Аннапурна IV. Здесь выделяются скальные поверхности без существенных признаков эрозии. С помощью байесовского моделирования, основанного на расчете геомеханических характеристик пород массива Аннапурна для различных высот, исследователи получили ряд реконструкций палео-Аннапурны IV, из которых отобрали удовлетворяющие требованию стабильности склона и данным об объеме обрушившейся породы. Усредненная модель показывает, что пик палео-Аннапурны IV достигал высоты около 8100 метров, то есть был примерно на 600 метров выше современной вершины Аннапурна IV (7525 метров). Анализируя причины события, авторы исследования указывают на явную склонность Высоких Гималаев (основного хребта этой горной системы) к крупномасштабным обрушениям склонов. Такие явления, как углубление долин и интенсивное морозобойное растрескивание вблизи границы питания ледника, можно рассматривать как факторы подготовки катастрофы, так как они формируют неустойчивые зоны вокруг ледниковых цирков. Определенную роль в этом процессе играет, вероятно и ориентация залегания сланцеватых пород. Что касается триггера обрушения, то кажущееся логичным предположение о крупном землетрясении в данном случае представляется ученым сомнительным. Вблизи Аннапурны известны сильные землетрясения около 1100 года, а также в 1255 и в 1344 годах, но эти даты не совпадают с полученной для оползня в цирке Сабче. Лаве и его коллеги предположили, что за столь мощные обвалы ответственны постоянные мерзлотные условия на высочайших пиках. Они приводят к упрочению склонов и затрудняют тем самым возникновение мелких и средних оползней. Пик продолжает расти до тех пор, пока из-за гравитационной неустойчивости не окажется превышен предел механической прочности такой мерзлой породы. После этого происходит гигантский обвал. Подобный сценарий может действовать не только в Гималаях, но и в других высоких, активно растущих горных системах. Будущие исследования помогут точнее оценить вклад в эволюцию таких регионов, как Центральный Тянь-Шань, Памир, Каракорум, и установить связь между скоростью тектонического подъема и высотой крупнейших пиков над границей питания ледников. Ранее N + 1 сообщал о том, как на берегу Каспийского моря обнаружили крупнейший активный оползень на суше, и о том, что потепление вызовет в высокогорных районах Северного полушария экстремальные проливные дожди. А еще мы рассказывали, как на Эвересте, на высоте более пяти километров зоологи нашли помет манулов.