Физики продемонстрировали возможность вычитания одного и двух фононов из резонатора, унося их энергию с помощью лазерных фотонов. Исследование рассеянного света позволило им провести томографию механического состояния оставшихся фононов, что подтвердило их неклассическую статистику. Работа опубликована в Physical Review Letters.
С ростом числа частиц физическим системам свойственно переходить из квантового режима в режим классический. В каждом конкретном случае эта граница своя, и физики по всему миру ищут способы, чтобы сдвинуть ее как можно дальше. Венцом этого процесса стало бы наблюдение состояния квантовой суперпозиции макроскопического тела, кажущуюся абсурдность которой пытался подчеркнуть Шрёдингер с помощью своего знаменитого кота. На сегодняшний день физики добились такого эффекта для не слишком больших объектов, например, 10-микрометровых мембран.
Другим отклонением от классического поведения оказывается статистическое распределение по доступным степеням свободы физической системы. Речь идет, например, о числе фотонов или фононов. При переходе к большому числу частиц системы быстро термализуются, то есть неизбежно переходят в состояние, в котором статистика подчиняется распределению Гаусса. Если же удается добиться негауссовой статистики, то такое состояние оказывается неклассическим. В частном случае неклассическое состояние можно представить в виде квантовой суперпозиции классических состояний, что получило название состояний кота Шрёдингера.
Важным этапом на пути к созданию таких состояний стала возможность манипуляции отдельными фотонами или фононами, а также прогресс в области квантовой оптомеханики. Физики уже научились видеть вычитание и добавление одиночных квантов звука. И если раньше для этого нужны были низкие температуры, то недавно ученые смогли добиться этого при комнатной температуре и зафиксировать соответствующую негауссову статистику.
Группа физиков из Австралии и Великобритании при участии Майкла Вэннера (Michael Vanner) из Имперского колледжа Лондона пошла дальше и, увеличив точность квантовой томографии, пронаблюдала состояния, которые получаются при вычитании двух фононов. Авторы подтвердили, что, как и в случае вычитания одиночного фонона, среднее число частиц в таких состояниях испытывает контринтуитивное умножение. Если для одиночного вычитания оно удваивается, то для двойного вычитания — утраивается.
Чтобы сделать это, физики создавали два оптических резонатора из фторида бария с модами шепчущей галереи в непосредственной близости относительно друг друга. Резонаторы были настроены на частоту лазера, но немного отличались так, чтобы разница между энергиями запасенных ими фотонов равнялась энергии возбужденных в образце фононов. Это давало авторам возможность фиксировать увеличение и уменьшение числа фононов на единицу, наблюдая за стоксовым и антистоксовым обменом энергией между резонаторами с помощью детектирования соответствующих одиночных фотонов, попадающих на лавинный детектор.
Помимо управляющей функции, лазерное излучение, провзаимодействовавшее с фононами, несло информацию об их статистике. Для томографии механического состояния такие фотоны через дополнительный волновод передавались на балансный гетеродинный детектор. Сигнал с лавинного детектора запускал в нем сравнение состояний фотонов с когерентными состояниями, что позволяло физикам извлекать функцию Вигнера, характеризующую статистику механический степеней свободы.
Авторы настроили свою установку для вычитания одного и двух фононов и измерили соответствующие s-параметризованных функции Вигнера. Они убедились, что сразу после вычитания статистика фононов имеет существенно негауссовый характер, что выражается в кольцеподобном виде этих функций в фазовом пространстве. Радиус этих колец с хорошей точностью отражал удвоение и утроение среднего числа фононов, предсказываемое теорией.
Физики исследовали также зависимость вариации сигнала, нормированной на квантовый шум, от времени. Ее увеличение в момент детектирования сигнального фотона в два и три раза, соответственно, также было в хорошем соответствии с теорией. Авторы отмечают, что такое хорошее соответствие стало возможным благодаря увеличению эффективности томографии на целый порядок по сравнению с предыдущими работами. Они надеются, что их работа станет важным шагом к созданию оперативной памяти для квантовых компьютеров, а также поможет лучше понять переход от квантового к классическому в больших системах.
Современная физика дошла до предела, когда всего одна частица может вызвать существенный отклик среды. В качестве примера можно привести однофотонную поляритонную конденсацию, про которую мы недавно рассказывали.
Марат Хамадеев
Для скалярной константы связи удалось уточнить предел почти на порядок
Физики из Великобритании получили наиболее жесткие на сегодняшний день ограничения на параметры ультралегкой темной материи. Для этого они использовали данные атомных часов и новый модельно-независимый подход к изучению вариаций во времени этих параметров и других фундаментальных констант. Работа опубликована в журнале New Journal of Physics. По современным представлениям темной материи во Вселенной примерно в пять раз больше обычного вещества. Она не участвует в электромагнитных взаимодействиях и поэтому недоступна прямому наблюдению. Наиболее вероятные кандидаты на роль темной материи — вимпы — до сих пор экспериментально не обнаружены. Поэтому ученые рассматривают и другие теории о составе темной материи: от сверхлегких частиц, например, аксионов, до первичных черных дыр. Ранее ученые уже использовали данные атомных часов для ограничения параметров ультралегкой темной материи с массой менее 10-16 электронвольт. На этот раз физики Натаниель Шерилл (Nathaniel Sherrill) и Адам О Парсонс (Adam O Parsons) с коллегами из университета Сассекса и Национальной физической лаборатории в Теддингтоне предложили новый модельно-независимый подход к изучению временных вариаций фундаментальных констант при анализе данных атомных часов. При этом количество свободных параметров увеличилось, что по мнению ученых позволит тестировать различные модели и их константы связи. Чтобы проверить новый подход в действии, физики использовали три типа атомных часов: на основе атомов стронция Sr в решетчатой ловушке, на основе ионов иттербия Yb+ в ловушке Пауля и атомные часы на цезиевом фонтане Cs. Частоты всех часов измерялись относительно водородного мазера, после чего рассчитывались отношения частот Yb+/Sr, Yb+/Cs и Sr/Cs. Это позволило исключить возможные ошибки, связанные с нестабильностью работы мазера из-за изменения параметров окружающей среды. Генерируемые частоты во всех часах зависят от соотношений постоянной тонкой структуры и массы электрона. Поэтому из взаимных измерений частот трех часов можно получить колебания со временем этих констант. Особенностью эксперимента стала независимость измерений от предполагаемой функциональной зависимости констант от времени. Поэтому полученные ограничения могут быть использованы при рассмотрении любых гипотетических моделей. В частности, ученые получили ограничения на константы связи гипотетических частиц темной материи в области масс от 10-20 до 10-17 электронвольт. Для скалярной константы связи dγ(1) физикам удалось исключить новую область параметров, усилив предыдущий предел примерно на порядок. Ученые до сих пор не могут определить параметры темной материи, хотя и видят ее проявления в различных процессах. Чтобы лучше разобраться, какие на сегодняшний день существуют модели, описывающие темную материю, пройдите наш тест.