Американские биологи собрали из стволовых клеток лягушки кластеры, которые способны практически к бесконечному самокопированию. Кластер в форме сфероида с разрезом (внешне он напоминает Пакмана) сгребает одиночные стволовые клетки в новый кластер такой же формы, который через пять дней может тоже начать собирать из отдельных клеток собственные копии. Раньше такой способ самокопирования и самоорганизации в клеточных системах не наблюдали, пишут ученые в Proceedings of the National Academy of Sciences.
Способность к самовоспроизведению — одно из ключевых свойств любой живой системы. Процессы создания копий (или аналогов) целого организма, отдельной клетки или даже молекулы необходимы для выживания вида или отдельной особи. На уровне организмов и клеток принцип самовоспроизведения — выращивание себе подобной системы под контролем родительского организма, при этом стадии развития дочернего организма оттачиваются в ходе эволюции. Самовоспроизведение на уровне отдельных молекул происходит иначе: это полное копирование химической и пространственной структуры. Копирование — значительно более быстрый и гибкий процесс, и для отдельных молекул его провести сравнительно просто, но вот на уровне сложных клеточных структур в природе не наблюдается.
Американские биологи под руководством Сэма Кригмана (Sam Kriegman) из Университета Тафтса обнаружили, что и клеточные кластеры могут производить собственные копии, просто собирая отдельные клетки в подобную себе структуру. Чтобы показать реалистичность такого способа, ученые использовали стволовые клетки из бластулы гладкой шпорцевой лягушки (Xenopus laevis). Если взять стволовые клетки с анимального полюса зародыша, то в соленом водном растворе при температуре 14 градусов Цельсия они за пять суток естественным образом развиваются до сфероидных кластеров из примерно трех тысяч клеток. Внутри этих кластеров оказываются клетки эпидермиса, а на поверхности — клетки мерцательного эпителия, благодаря которым кластер может активно двигаться.
Ученые обнаружили, что если эти клеточные сфероиды попадают в среду, в которой много одиночных стволовых клеток, то активно двигаясь в ней, кластеры могут «сгребать» отдельные клетки в новые кластеры второго поколения, которые спустя пять дней вырастают до сфероидов с аналогичной структурой.
Если клеточные кластеры второго поколения отделить от родительских кластеров и тоже поместить в среду с большим количеством одиночных стволовых клеток, то они точно так же за счет случайного активного движения собирают эти клетки в новые кластеры. Однако через одно или два поколения способность к самокопированию теряется — либо из-за нарушения формы, либо из-за изменения траекторий движения.
Чтобы увеличить число поколений, через которое клеточные кластеры теряют способность создавать собственные копии, ученые использовали компьютерное моделирование. Оказалось, что для воспроизводимости достаточно немного модифицировать форму кластера, сделав в сфероиде углубления или отверстия. Проверив множество различных возможных форм с помощью эволюционного алгоритма, описывающего двумерные массивы частиц, ученые нашли форму, которая позволяет самокопироваться практически до бесконечности. Кластер, напоминающий по форме Пакмана, сгребает клетки в себе подобные структуры, которые потом через пять дней могут делать то же самое.
Ученые отмечают, что предложенный ими механизм самокопирования не требует никакой генной модификации и дополнительного контроля химических взаимодействий — это чисто кинематический механизм в кластерах из обычных стволовых клеток. За счет этого можно копировать кластеры с очень широким разбросом по размерам. По словам исследователей, результаты их работы позволяют лучше понять, в каких условиях в живых организмах вообще возможно самовоспроизведение, а также могут оказаться полезными и для создания аналогичных искусственных систем.
Для органических молекул самокопирование — более естественный процесс, чем для клеточных структур, но и его добиться довольно сложно. Например, чтобы создать систему, внутри которой возможно самокопирование ротаксана, химикам пришлось делать смесь из шаблона и нескольких реагентов для сборки, в которой происходило одновременно четыре типа реакций. А другая группа ученых создала систему, в которой саморепликация волокон происходит под действием света. По словам ученых, одна из целей таких работ — химическое моделирование протометаболизма и создание протоклетки.
Александр Дубов
Впрочем, лишь на 4-6 дней
Европейские микробиологи обнаружили у почвенной бактерии Bacillus subtilis способность к хранению информации о смене дня и ночи. Если содержать бактерий в условиях 24-часовых суток, то у них устанавливался суточный цикл экспрессии ytvA — белка, чувствительного к синему свету. После смены режима освещения перестройка экспрессии ytvA происходила не мгновенно: признаки предыдущего цикла «день-ночь» сохранялись еще 4-6 дней. Чем ярче был свет днем, тем короче становился период колебаний экспрессии ytvA после перехода с режима «день-ночь» на полную темноту — так же ведут себя и некоторые циркадные ритмы человека. Исследование опубликовано в журнале Science Advances. Наиболее хорошо изучены циркадные ритмы, регулирующие поведение, рост и развитие эукариот. Но похожие внутриклеточные сигнальные пути описаны и у фотосинтетических прокариот, для метаболизма которых освещенность критически важна. Более того — в последние годы следы похожих систем находят в геномах и протеомах архей и бактерий, неспособных к фотосинтезу. Пока неизвестно, как устроены и для чего нужны такие системы прокариотам, неспособным к фотосинтезу. Марта Мерров (Martha Merrow) с коллегами-микробиологами из университетов Дании, Нидерландов, Великобритании и Германии описали циркадный ритм, связанный с регуляцией ответа на стресс у сапрофитной почвенной бактерии Bacillus subtilis. У бактерии есть несколько разновидностей фоточувствительных пигментов, от которых сигнал через цепочку посредников сходится на белках семейства Rsb. Они влияют на экспрессию более 200 генов, опосредующих ответ на осмотический, температурный, окислительный стресс и на действие антибиотиков. Основной пигмент, отвечающий за детекцию синего света у B. subtilis — белок ytvA. Ученые получили два штамма «дикого типа» B. subtilis и модифицировали их таким образом, чтобы бактерии синтезировали люциферазу вместе с белком ytvA (таким образом, клетки флуоресцируют прямо пропорционально уровню экспрессии ytvA). На первом этапе микробиологи в течение пяти суток растили культуры бактерий в условиях двенадцатичасового дня (монохроматический синий свет с длиной волны 450 нанометров) и двенадцатичасовой ночи (полная темнота). После того, как бактерии «привыкали» к такому режиму, их на неделю оставляли в темноте. Как и ожидали ученые, в первой фазе эксперимента активность ytvA падала спустя полчаса после включения синего света и плавно нарастала в темное время суток. Но во второй фазе колебания не исчезли, а их период растянулся до 29,4-30,2 часов, в зависимости от штамма. У культур B. subtilis, выросших без света, тоже были обнаружены колебания экспрессии ytvA с периодом 26-31 дня. Затем ученые решили посмотреть, как меняется активность ytvA при изменении продолжительности цикла «день-ночь». Как и в первой части экспериментов, сначала бактерии росли в условиях двенадцатичасовых периодов света и темноты. Но через пять дней ученые сокращали цикл в два или три раза. Поначалу после смены режима у бактерий сохранялся 24-часовой паттерн экспрессии ytvA, а рост активности гена в ответ на дополнительные периоды тьмы был менее выраженным. Но уже спустя пять дней бактерии «переучивались» на новый режим света и тьмы. Во время эксперимента ученые обнаружили у бактерий эффект, описанный в хронобиологии как «правило Ашоффа»: чем больше интенсивность освещения днем, тем короче становятся циркадные циклы в темноте у дневных организмов. При росте освещенности с 0,1 до 60 микроэйнштейнов на квадратный метр в секунду период колебаний падал в среднем с 27,5 ± 1,9 до 24,1 ± 0,7 часа. Ранее правило Ашоффа было описано в экспериментах на птицах и арабидопсисе, но не у прокариот. Открытие микробиологов показывает: сложно устроенные и зарегулированные циркадные ритмы распространены шире, чем считалось ранее. Впрочем, пока неизвестны белки, управляющие экспрессией фоточувствительного ytvA, и неясно, какие эволюционные преимущества дает бактериям такая регуляция. Авторы предполагают, что фоторецепторы, активирующие ответ на стресс, могут быть нужны почвенным организмам для регуляции для снижения интенсивности метаболизма на большой глубине. Подробнее о циркадных ритмах у представителей разных царств живой природы читайте в нашем материале «Ход часов лишь однозвучный», а о роли синего света в их регуляции — в материале «Только синь сосет глаза».