Загрузка галереи
Коллаборация NOvA сообщила о результатах поиска стерильного антинейтрино с помощью двух детекторов, расположенных на расстоянии 1 и 810 километров от их источника в Национальной ускорительной лаборатории имени Энрико Ферми. Данные, собранные о событиях с нейтральным током за два с половиной года, свидетельствуют об отсутствии стерильных осцилляций в диапазоне квадратов масс от 0,05 до 0,5 квадратных электронвольт. Исследование опубликовано в Physical Review Letters.
Наблюдение за нейтрино и антинейтрино, рождающимися в различных источниках, включая ускорители, атмосферу, Солнце и ядерные реакторы, стало надежным свидетельством того, что по мере распространения эти частицы испытывают смешивание всех трех ароматов. Оно выражается в том, что вероятность встретить нейтрино с тем или иным ароматом (флейвором) меняется с расстоянием по периодическому закону, причем период тесно связан с разницей их квадратов масс. Открытые и объясненные таким образом нейтринные осцилляции стали поводом к присуждению Нобелевской премии по физике в 2015 году.
Вместе с тем, с 90-х годов прошлого века и по сей день от различных экспериментальных групп продолжают поступать противоречивые данные, которые не могут быть объяснены текущей осцилляционной моделью. В качестве одного из самых главных объяснений теоретики рассматривают введение как минимум одного нового нейтрино (антинейтрино), которое проявляет себя только через осцилляции с уже известной тройкой частиц. За это свойство новый нейтрино получило название стерильного. Подробнее об этих поисках мы рассказывали в материале «Чистая аномалия».
Осцилляции известных нейтрино в стерильные делают их невидимыми для детекторов. Поэтому стерильное нейтрино ищут по отклонениям числа зафиксированных событий какого-либо слабого взаимодействия от предсказаний в рамках трехфлейворной модели. Задача усложняется тем, что, чтобы поймать это отклонение, нужно угадать с расстоянием до детектора. Если измерять их слишком близко, осцилляции не успеют проявить себя, а если слишком далеко, то нейтрино успеют равномерно перераспределиться по всем ароматам. Поскольку период осцилляции тесно связан с балансом неизвестных масс, физикам приходится «прощупывать» широкий диапазон расстояний.
Недавно физики из коллаборации NOvA внесли свой вклад в поиск стерильных антинейтрино, не найдя их для диапазона разности квадратов масс от 0,05 до 0,5 квадратного электронвольта. Чтобы сделать это, физики лишь немного изменили установку, которую они использовали для аналогичного поиска стерильных нейтрино в том же диапазоне масс с отрицательным результатом.
Эксперимент NOvA состоит из двух нейтринных детекторов, расположенных на расстояниях 1 и 810 километров от источника. Роль источника играли столкновения протонных пучков с углеродной мишенью, производимые в главном инжекторе Национальной ускорительной лаборатории имени Энрико Ферми. Физики имели возможность менять нейтринно-антинейтринный баланс пучка (преимущественно мюонного) с помощью изменения полярности в магнитных рупорах. При этом их интересовали рождения антинейтрино только в событиях с нейтральным током, то есть не меняющих заряды начальных и конечных частиц, в то время как все прочие события относились к фону.
Ближний и дальний детекторы представляли собой трехмерные массивы пластиковых ячеек, заполненных жидким сцинтиллятором с суммарной массой 193 и 14000 тонн соответственно. Попадание в жидкость нейтрино или антинейтрино вызывает выход заряженной частицы, чье черенковское излучение передается по волокну на лавинный фотодиод. Впоследствии этот сигнал обрабатывается алгоритмом, который позволяет реконструировать энергию нейтрино или антинейтрино.
Группа собирала сигнал с детекторов с июня 2016 по февраль 2019 года. Алгоритмы отфильтровывали сигналы по целому ряду критериев, подтвердив для дальнего детектора всего 121 событие. Параллельно физики проводили комплексную симуляцию всех этапов эксперимента, начиная от моделирования образования антинейтрино из адронных ливней в источнике и заканчивая моделированием распространения частиц через детекторы. В результате, они сравнивали измеренные спектры с результатами симуляций для трехфлейворной модели и не нашли никаких отличий в пределах одного стандартного отклонения.
Спектр событий на ближнем детекторе, прошедших отбор. Синим цветом показаны результаты симуляции для трехфлейворной модели.
NOvA Collaboration / Physical Review Letters, 2021
Авторы отмечают, что проделанная работа — это первый поиск осцилляций стерильных антинейтрино на длинной базе с помощью ускорителей. В будущем NOvA планирует увеличить данные по антинейтрино в 2,5 раза и объединить их с данными по нейтрино, что поможет изучить нарушение CP-инвариантности в стерильных осцилляциях.
Ранее физики из этой же коллаборации наложили ограничения на разницу между нейтрино и антинейтрино, а также подробно исследовали антинейтринные осцилляции.
Марат Хамадеев
Это поможет добывать руду и обрабатывать ядерные отходы
Европейские физики теоретически и экспериментально исследовали цикличные процессы всплытия и опускания на дно зерен арахиса в пиве, который называют «танец арахиса». Для этого они в течение двух с половиной часов снимали на камеру этот процесс в лаборатории. Анализируя эти результаты, ученые выяснили, что танец происходит из-за поверхностных свойств арахиса, на которых образование пузырьков предпочтительнее, чем на стенках стакана. Исследование опубликовано в Royal Society Open Science. В России распространен фокус, который показывают на вечеринках с шампанским. Для этого в полный бокал игристого напитка бросают изюминку, кусочек ананаса или дольку шоколада. Брошенное в жидкость тело сначала тонет, но затем всплывает под действием пузырьков газа, зародившихся на его краях. У поверхности пузырьки разрушаются и цикл повторяется. В аргентинских барах существует такая же традиция, только вместо шампанского там используют пиво, а вместо изюма — арахис. Там этот трюк получил название «танец арахиса». Несмотря на качественное понимание такого танца, физики плохо понимают его детали. Вместе с тем, такие процессы происходят не только на вечеринках или в барах, но и в природе: предполагается, что именно так плотный магнетит всплывает в магме. Похожим же образом горняки отделяют железо от руды. Разобраться в этом вопросе решили Луис Перейра (Luiz Pereira) из Университета Людвига Максимилиана и его коллеги из Англии, Германии и Франции. Для этого они провели экспериментальны с арахисом в пиве и подтвердили их результаты численными вычислениями. Физики наполняли резервуар размером 100 × 100 × 200 миллиметров одним литром лагера и опускали в него 13 обжаренных зерен арахиса Arachis hypogaea. Весь процесс они снимали на цифровую камеру. На начальном этапе все зерна плавали на поверхности из-за активного образования пузырей в перенасыщенном углекислом газом пиве. Примерно через 25-30 минут количество пузырьков уменьшалось и арахис начинал цикличное движение вверх и вниз под действием описанного выше механизма. Танец всех зерен прекратился примерно через 150 минут после начала эксперимента — количество газа, растворенного в пиве, опустилось ниже пороговой отметки. Для анализа результатов эксперимента авторы разбили задачу на три части: зарождение пузырьков, плавучесть и цикличность. Для этого им потребовалось знать капиллярные свойства системы, такие как плотность пива и газа, поверхностное натяжение, углы смачивания и так далее. Первое они рассчитали с помощью пивного онлайн калькулятора, второй — взяли из литературы, а для получения информации об углах ученым потребовалось провести дополнительные эксперименты по смачиванию пива стеклом и плоской частью арахиса. В результате физики смогли воспроизвести основные особенности поведения арахиса в пиве, которые они увидели в эксперименте. Так, они доказали, что арахис обладает поверхностью, на которой образование пузырей энергетически более выгодно, чем на стенках стакана. Если бы это было не так, танец арахиса был бы невозможен. Ученые отмечают, что арахис в пиве может служить модельной системой не только для задач геологии и добычи полезных ископаемых, но и в обработке ядерных отходов. Один литр пива — это не так много, когда речь идет о физическом эксперименте (впрочем, не только). То ли дело 30 литров! Именно столько потратили физики из Германии и Кореи, изучая стабильностью пивной пены при розливе «снизу-вверх».